首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycrystalline YBa2Cu3O7-y (YBCO) and Y0.6Gd0.4Ba2-xNbxCu3O7-y (YGBNCO) compounds with 0≤x≤0.225 were synthesized using standard solid state reaction technique. The structure for all samples was characterized by X-ray difference (XRD) and scanning electron microscopy (SEM). The transport properties were measured by the (FPP) method in the temperature range from 70 to 130 K. As the Nb content in the samples increased, a diffused phase indicating a niobium perovskite phase and a small amount of unidentified phase appeared. With the increase of Nb content, the superconducting transition temperature Tconset increased slowly with x≤0.125, and then it remained unchanged or slowly decreased with 0.125≤x≤0.225. It could be found that there was a slow decrease of zero-resistance temperature, Tcoffset, with the increase of Nb content. The larger transition width might result from the YBa2NbO6 phase, impurity and unidentified phases of the sample due to the Nb doping.  相似文献   

2.
In order to investigate the effect of the La_2O_3 on the phase separation and crystallization of ZnO-B_2O_3-SiO_2 glass, after the occurence of the phase separation and crystallization of glasses by heat treatment, the microstructure morphology and distribution of elements in different sample areas were characterized by the scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS); the non-isothermal crystallization kinetics of the glass samples was studied by using a differential scanning calorimeter(DSC) and the precipitated crystals of crystallized glass were determined by the X-ray diffraction(XRD). The results suggest that the phase separation and crystallization of 60ZnO-30 B_2O_3-10SiO_2 glass occur at glass surface, and the incorporation of small amount(4 mol%) of La_2O_3 significantly inhibits the glass phase separation and consequently improves the thermal stability of glass.Doping of La_2O_3 accelerates the glass crystallization at the elevated temperature(660 ℃), making the depth of crystal layer thicker and diffraction intensity in XRD patterns stronger. However, due to the precipitation of several crystals that occur simultaneously when La_2O_3 doping amount is 4 mol%, crystallization of the 60ZnO-30B_2O_3-10SiO_2 glass is obviously depressed, the crystallization activation energy Ec and the relative crystallinity X_c of the glass reach the maximum and the minimum values, respectively.Although transition from one-dimensional growth of crystals to two-dimensional growth of crystals results from La_2O_3 addition, the one-dimensional growth of crystals remains dominant in crystallization process. This work can provide some useful information for preparing glass ceramics with nano-crystals precipitated in the glass surface.  相似文献   

3.
The effects of Nd_2O_3 nanoparticles addition on microstructure,transport and AC susceptibility properties of YBa_2Cu_3O_(7–δ)(Y123) superconductors were systematically investigated using X-ray diffraction(XRD),scanning electron micrograph(SEM),four point probe measurement and AC spectrometer.It was found that the added samples were predominant by Y-123 phase beside small amount of Y-211 and unreacted Nd_2O_3 secondary phases.All added samples preserved the orthorhombic structure similar to the pure sample and no orthorhombic-to-tetragonal transition occurred.The samples became more porous and their grain size significantly decreased with addition of Nd_2O_3.The addition of nano-Nd_2O_3 disturbed the grain growth of Y123,thus resulting in the degradation of superconducting properties of the samples.The superconducting transition temperature(Tc onset) of samples decreased from 92 K for x=0.0 to 78 K for x=1.0 wt.%,which could be attributable to oxygen vacancy disorder.From AC susceptibility result,the inter-and intra-granular loss peaks became wider and broader with increase of Nd_2O_3 addition due to the weakening of grains coupling.On the other hand,the inter-granular critical current density,Jcm,was found to increase with Nd_2O_3 addition and had the highest value at x=0.6,confirming that Nd_2O_3 nanoparticles acted as pinning centers in Y123 matrix.  相似文献   

4.
Herein, we demonstrate the synthesis of W and Ba co-doped La_2Mo_2O_9(LBMWO) nanocrystalline powder by a sol-gel process. In all the compositions have general formulae La_(1.9)Ba_(0.1)Mo_(2-x)W_xO_(8.95)(x = 0-0.40). The crystal structure, microstructure and conductivity of LBMWO were characterized by X-ray diffraction, scanning electron microscopy and electrical impedance spectroscopy. In addition, the thermal and decomposition properties of the LBMWO gel were analyzed by differential scanning calorimetry-thermogravimetric. The results reveal that all LBMWO powders calcined at 700 ℃ have a cubic structure;the average crystallite size is about 48 nm. The unit cell parameter of LBMWO powders increases with increase in W content. The as-synthesized nanocrystalline LBMWO samples exhibit excellent sinterability and a relatively lower sintering temperature of 900 ℃. A high relative density of -96% is achieved after sintering at 900 ℃ which is in good agreeme nt with the re sults of the SEM. Moreover, W and Ba codoping suppresses the phase transition and effectively stabilizes the β-phase at low temperature. At the same time,La_(1.9)Ba_(0.1)Mo_(1.85)W_(0.15)O_(8.95) exhibits high ionic conductivity, 3.07 x 10~(-2) S/cm at 800 ℃. It is therefore concluded that co-doping can improve the properties of La_2MO_2O_9 electrolytes.  相似文献   

5.
The nano-crystalline La_(0.1)Bi_(0.9)FeO_3 compound was successfully synthesized by starch-based combustion method. The crystal structure and magnetic behavior were studied by temperature-dependent X-ray diffraction(XRD), scanning electron microscopy(SEM), differential scanning calorimetry(DSC) and magnetic measurements. The La_(0.1)Bi_(0.9)FeO_3 compounds crystallized in a rhombohedrally distorted perovskite structure with space group R3 c. The substitution of La for Bi reduced the rhombohedral distortion. The structural phase transitions in La_(0.1)Bi_(0.9)FeO_3 driven by temperature showed that the extraordinary two-phase coexistence state of BiF eO 3 and LaF eO 3 was observed in a narrow temperature range of 630–700 oC. The magnetization of the La_(0.1)Bi_(0.9)FeO_3 sample was improved by heat treatment in the temperature range. When the heat treatment temperatures rose from 25 to 600 oC, the remanence(Mr) and coercivity(Hc) of the La_(0.1)Bi_(0.9)FeO_3 compound almost remained the same, and increased rapidly to 0.134 emu/g and 7.1 KOe on further increasing the heat treatment temperature to 650 oC.  相似文献   

6.
Structural, magnetic and electrical properties of the La0.7Ca0.3Co1–xMnxO3(x=0, 0.7 and 1) samples prepared by a simple method were systematically studied and it was found that the crystal structure was transformed from rhombohedral for La0.7Ca0.3CoO3(LCCO) and La0.7Ca0.3Co0.3Mn0.7O3(LCCMO) samples to orthorhombic for La0.7Ca0.3MnO3(LCMO) sample. The AC magnetic susceptibility measurements showed that LCCO sample underwent a transition from paramagnetic(PM) to ferromagnetic(FM) phase at Curie temperature, TC~155 K and below Curie temperature, the glassy ferromagnetism nature was observed. In LCCMO sample,clear evidence of spin glass(SG) state was observed at low temperature. PM-FM phase transition at about TC~260 K and long range FM order at low temperatures were observed in LCMO sample. Both the LCCO and LCCMO samples exhibited insulating behavior in the whole range of measuring temperature whereas the LCMO sample underwent a clear metal-insulator(MI) transition at about TMI~263 K, corresponding to Curie temperature. Metallic region of ρ(T) curve of the LCMO sample was fitted to the model of electron-electron and electron-magnon scattering. The charge carrier transport behavior in all the samples was compared based on polaronic models.  相似文献   

7.
In this paper,various techniques including BET,XRD,SEM and XPS were used to study the sintering ofpure and La_2O_3-doped titania.The experimental results show that sintering of titania proceeds via volume diffu-sion.Adding of lanthanum oxide decreases the rate of sintering and hinders the phase transition from anatase torutile crystal by strong surface interaction between the mixed crystals(La_4Ti_9O_(24),La_(0.66)TiO_(2.99))and TiO_2.  相似文献   

8.
In-situ HVEM observation on phase transition of the YBa_2Cu_3O_(7-x) superconducting compound in pro-cess of heating was carried out,and high temperature X-ray diffraction analysis in air and X-ray diffractionphase analysis for the sample treated in vacuum condition were made.The results showed that the temperatureof phase transition is related to oxygen content in the sample and in general,is 100℃ to 120℃ lower in vacu-um condition than in air.At 320℃ to 350℃ twin bands begin to disappear,and some Cu_2O are formed on thesurface of the sample and transit from orthorhombic YBa_2Cu_3O_(7-x) to arthorhombic Y_2BaCuO_5 compound.This transition was completed at about 500℃.Above 900℃,this compound consists of the Y_2BaCuO_5,BaCuO_2,Y_2O_3 and some other minor compounds.No phase transition was observed during cooling thesample.  相似文献   

9.
A series of high phase purity blue light excitable yellow-emitting La_(3-x)Si_6 N_(11):xCe~(3+) phosphors were synthesized by the high temperature solid state reactions method. The structure and luminescent properties were investigated. The phase structure was studied by means of X-ray diffraction, structures refinements and energy dispersive X-ray spectroscopy. The phosphors effectively excited by the light of450 nm and show intense yellow emission at 535 nm with FWHM of 115 nm corresponding to the5 d →~2 F_(5/2) and 5 d →~2 F_(7/2) transitions of Ce~(3+). In addition,the optimized La_(2.86)Si_6 N_(11):0.14 Ce~(3+) exhibits a weak thermal quenching, which remains 98.2% of the initial emission intensity when heated to 200 ℃,the thermal quenching properties exhibit a modest decline when the temperature returned to room temperature. The above results indicate that La_3 Si_6 N_(11):Ce~(3+) can be regarded as a high promising phosphor for applications in high power white-light LED.  相似文献   

10.
Magnetic properties and structures in La1-zPrz(Fe0.895–xCoxSi0.105)13 (x=0.07, 0.08; z=0, 0.2, 0.4) compounds were investigated. When Pr and Co substituted for La and Fe, the Curie temperature of the compounds was adjusted to around room temperature. The magnetic phase transition was driven from first-order to second-order due to Co substitution. As a second-order phase transition material, the MCE of La0.6Pr0.4(Fe0.825Co0.07Si0.105)13, whose relative cooling power was 175 J/kg under a field change of 2 T, ...  相似文献   

11.
The effect of the Ni/Cu substitution on the electrical resistivity and microstructure of the polycrystalline GdNi_(5–x)Cu_x series was studied. The value of temperature of phase transition(T_(ph)) estimated from temperature dependence of electrical resistance varied non-linearly across copper doping from 32.5 K(x=0.0) to 29.1 K(x=5.0). The value of residual resistivity(ρ_o) estimated at low temperature range decreased from 27.28 μΩcm(x=0.0) to 9.44 μΩcm(x=5.0), which was discussed as the influence of microstructure. In order to describe the temperature dependence of resistivity ρ(T) a variety of approaches were applied due to different scattering mechanisms occurring at high and low temperature ranges. The change within ρ(T) curvature was evidenced at low temperature range across copper doping. The temperature variation of the resistivity was quite peculiar for Cu-rich compounds(x=4.8, x=5.0), which might be correlated with the incommensurate magnetic structure derived from the weakly negative interaction between the nearest neighbours of Gd. The correlation between microstructure and resistivity was observed.  相似文献   

12.
Melt-spun ribbons which are the important raw material for hot-deformed magnets can be prepared by single-roller melt-spinning. In order to prepare well-structured ribbons, the model of temperature field for single-roller melt-spinning process was constructed in this work. The heat conduction in this process was simplified as one dimensional heat conduction problem. It was shown by modeling that, the temperature field in the melt-spinning before solidification in this model could be described as this equation T(x,t)=Tmoexp[–k(x–x0)–k2αt]+T0. The temperature T(x,t) of the alloy melts decreased with increased position x and cooling time t exponentially from the wheel-free surface to the wheel-side surface. The constant k determined the decrease speed of alloy temperature T(x,t), which was proportional to the interfacial heat transfer coefficient h and the interfacial area of heat conduction A0, but inversely proportional to the thermal conductivity K. x0 was the thickness of the alloy melt. With increased x0, the temperature difference between wheel-free surface and the wheel-side surface became larger, which would lead to larger difference in grain size. In experiments, the influence of melt-spinning process parameters on the temperature field model was discussed, such as cooling roller materials, wheel speed, and so on. Melt-spun ribbons prepared by single-roller melt spinning at different wheel speed were investigated and magnetic properties of die-upset magnets from melt-spun ribbons on different cooling roller were analyzed. The variation of grain size in the depth direction consisted with temperature field model. This model provided directions for the preparation of melt-spun ribbons with uniformly distributed fine grains, which were very necessary for producing hot-deformed magnets with high magnetic performance.  相似文献   

13.
Heat capacities of the rare-earth complex with glycine [Ho(Gly)3Cl3·3H2O] were measured with a high-precision automatic adiabatic calorimeter over the temperature range from 78 to 348 K.In the experimental temperature range,the heat capacities increased in a smooth and continuous manner and no phase transition or thermal anomaly occurred.Therefore,the sample was stable in the above temperature range.The values of experimental heat capacities were fitted to a polynomial equation with least square method and ...  相似文献   

14.
The Ba-, La- and Ag-doped polycrystalline Ca2.9M0.1Co4O9 (M=Ca, Ba, La, Ag) thermoelectric bulk samples were prepared via citrate acid sol-gel synthesis method followed by spark plasma sintering technique. The bulk samples were characterized and analyzed with regard to their phase compositions, grain orientations as well as microstructures. The high temperature thermoelectric transport properties of the bulk samples were studied in detail. All bulk samples were found to be single-phased with modified body texture. The electrical resistivity was modulated as a result of carrier concentration modification, however the carrier transport process was not influenced; the Seebeck coefficient was deteriorated simultaneously. The total thermal conductivity was remarkably reduced, on account of the decreasing of phonon thermal conductivity. The thermoelectric properties of the Ba-, La-, and Ag-doped bulk samples were optimized, and the Ba-doped Ca2.9Ba0.1Co4O9 system was found to have the highest dimensionless figure of merit ZT0.20 at 973K, which was remarkably higher than that of the un-doped sample.  相似文献   

15.
The structure, magnetic and magnetocaloric properties of the Ge-rich Gd5Ge2.05-xSi1.95-xMn2x (x=0.01 and 0.03) alloys were investigated by scanning electron microscopy, X-ray powder diffraction, differential scanning calorimeter (DSC) and magnetization measurements. The results of energy dispersive X-ray analysis (EDX) and X-ray diffraction analyses showed that the composition and crystal structure of the alloys were desired. DSC measurements were performed to determine the transformation temperatures for each alloy. Both alloys exhibited the first order phase transition around room temperature. The alloys showed an anti-ferromagnetic transition around 60 K. The isothermal magnetic entropy changes of the alloys were determined from the isothermal magnetization measurements by using the Maxwell relation. The maximum values of isothermal magnetic entropy change of the Gd5Ge2.05-xSi1.95-xMn2x alloy with x=0.01 was found to be -12.1 and -19.8 J/(kg·K) using Maxwell equation around 268 K in applied fields of 2 and 5 T, respectively.  相似文献   

16.
Novel orange-red emitting Ba_2Ca_(1–x)Zn_2Si_6O_(17):x Sm~(3+)(0.02≤x≤0.08) phosphors were synthesized using conventional solid-state reaction method under air atmosphere. The phase formation of the samples was characterized by powder X-ray diffraction patterns. Scanning electron microscopy(SEM) and photoluminescence properties were also investigated. The narrow excitation and emission spectra indicated the typical 4f-4f transitions of Sm~(3+). The dominant excitation line was around 405 nm attributed to ~6H_(5/2)→ ~4F_(7/2) and the emission spectrum consisted of four emission peaks at 562, 600, 647, and 708 nm corresponding to the various transitions ~4G_(5/2) to ~6HJ(J=5/2, 7/2, 9/2 and 11/2) of the Sm~(3+) ions in the same order. The strongest emission band located at 600 nm was attributed to ~4G_(5/2)→~6H_(7/2) transition of Sm~(3+), producing bright orange-red color emission. The optimal dopant concentration of Sm3+ ion in Ba_2CaZn_2Si_6O_(17):x Sm~(3+) phosphor was around 4 mol.% and the critical transfer distance(Rc) of Sm~(3+) was calculated to be 2.65 nm. Decay time varied with the Sm~(3+) concentrations in Ba_2 CaZn_2Si_6O_(17) phosphors. In addition, the Commission International del'Eclairagethe(CIE) chromaticity coordinates of Ba_2Ca_(0.96)Zn_2Si_6O_(17):0.04Sm~(3+) phosphor was located in the orange-red region(0.547, 0.450) and the correlated color temperature(CCT) was 2543 K. The present results indicated that Sm~(3+) activated Ba_2CaZn_2Si_6O_(17) phosphors may be used as an orange-red emitting phosphor for near-ultraviolet(n-UV) based white light emitting diodes(WLEDs) applications.  相似文献   

17.
PMMA matrices were doped with nano-crystalline neodymium oxides synthesized by thermal decomposition process. X-ray diffraction and high-resolution transmission electron microscopy measurements were carried out to investigate the structure, phase, and the morphology of the Nd_2O_3 nanocrystals and those embedded in the PMMA matrix. The average grain sizes were estimated 35 ± 6 nm and 46 ± 4 nm for non-annealed and annealed Nd_2O_3 particles, respectively. The grain size distributions(GSD) were calculated from the diffraction peaks of the annealed and non-annealed Nd_2O_3 powders and doped PMMA samples. The mass density, refractive index. UV-Visible absorption spectra were measured and the data were analyzed using the Judd-Ofelt approach to determine the oscillator strengths, the spontaneous emission probabilities and the branching ratios as a function of the nano-crystalline Nd_2O_3 content in the range of 0.1 wt.%-20 wt.% of MMA. Luminescence spectra upon 808 nm diode laser excitation were carried out in the wavelength range of 850-1550 nm at room temperature. The photoluminescence study has shown that the reasonably sharp emission peaks were observed upon heat treatment at 800 ℃ for 24 h for all concentrations of Nd_2O_3 nanopowders in PMMA. The infrared laser transition of Nd~(3+) ions at about 1.06 μm due to the ~4F_(3/2)→~4I_(11/2) transition was analyzed and discussed in Nd_2O_3 system for their possible applications in the photonic technology.  相似文献   

18.
The La-Co substituted Sr_(1–x)La_xFe_(12–x)Co_xO_(19)(x=0–0.5) ferrites with appropriate Bi_2O_3 additive were prepared by conventional sintering method and microwave sintering method at low sintering temperatures compatible with LTCC(low temperature co-fired ceramics) systems, and their sintering behavior was chiefly investigated, including the crystal structure, saturation magnetization Ms, magnetic anisotropy field H a, intrinsic coercivity H ci, and Curie temperature T C. Experiment results clearly showed that the pure M-type crystal phase was successfully obtained when the La-Co substitution amount x did not exceed 0.3. However, the single M-type phase structure transformed to multiphase structure with further increased x, where the M-type phase coexisted with the non-magnetic phase such as α-Fe_2O_3 phase, La_2O_3 phase, and La CoO_3 phase. Appropriate La-Co substitution improved the Ms(62 emu/g), Ha(1400 k A/m), and Hci(320 k A/m) for the ferrites with x varying from 0.1 to 0.3, but the T C decreased with increasing substitution amount. Moreover, the microwave sintered ferrites could provide larger H ci and similar Ms compared with the conventional sintered ferrites.  相似文献   

19.
The phases in alloys(Tb1-xCex)Co2 with x=0,0.1,0.2,0.3,0.4 and 0.5 were investigated by X-ray diffraction analysis,and the magnetocaloric effect for x=0-0.4 was studied by magnetization measurement.The samples were almost single phase with MgCu2-type cubic structure.The magnetization decreased with the increase of Ce.The Curie temperatures(Tc) of Tb1-xCexCo2 alloys with x from 0.1 to 0.4 were 180,165,160 and 152 K,respectively.For x=0.5 in the range from 100 K to 230 K,the point of magnetic transition was n...  相似文献   

20.
La0.67–xDyxPb0.33MnO3(x=0.00 and x=0.10) were elaborated by the solid state method and checked by X-ray diffraction. Close to magnetic temperature transition, the order transition and the critical behavior were investigated by dc magnetization measurements versus x composition. The critical properties were investigated through various techniques such as modified Arrott plot(MAP), Kouvel-Fisher(KF) method and critical isotherm(CI) analysis based on the data of static magnetic measurements recorded around the Curie temperature TC. The values of critical exponents(β and γ) estimated were found to lie between those predicted for a 3D-Ising model for x=0.00 and those of 3D-Heisenberg model for x=0.10. The reliability of the critical exponent’s values was confirmed by the Widom scaling relation and the universal scaling hypothesis. The change in the universality class should be due to the increase of the Dy content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号