首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
介绍了一种自行设计的小型水冷式跨临界CO2热泵热水器试验系统,研究了在蒸发器侧冷冻水流量不变,改变气冷器侧冷却水流量的情况下,相关系统性能的变化规律。试验结果表明:试验条件下,在流量为0.0243kg/s时,平均制热量最大,约为1570W;系统制热COPh值随气冷器冷却水流量的增加而升高,最大COPh值为2.84;跨临界CO2热泵热水器可用于制取较高温度的热水。  相似文献   

2.
《流体机械》2015,(10):61-66
介绍了一种即热空气源变频热泵热水系统,分析了水路模块与热泵模块的理论耦合,得到冷凝器出水流量和温度与热泵系统制热量的关系,以及承压水箱流量和温度与热泵系统制热量的关系。测试了机组在变工况下给用户提供42℃、6L/min热水的的运行特性,结果表明:运行时压缩机排气比循环加热式热泵热水器的排气温度和压力低并且稳定;运行的环境工况范围大,即在高温43℃和低温-7℃均可运行;制热COP随环境变化呈抛物线状变化,且在43℃、20℃和-7℃时,制热COP分别为12.6、4.5和3.8。  相似文献   

3.
为了更加方便快速地研究跨临界CO_2制热系统的系统性能变化情况,以及找到系统的最优排气压力,在Modelica/Dymola软件平台中进行了跨临界CO_2制热系统的建模和仿真,并提出了相应的最优排气压力关联式。通过对环境温度为-20~30℃、热水出口温度为60~85℃、水入口温度为5~50℃大范围工况下系统性能的仿真,结果表明:在相同的工况下,随着排气压力上升,跨临界CO_2制热系统存在一个最优COP,对应该COP的压力为最优排气压力。最优排气压力随环境温度和热水出口温度的升高而升高,随水入口温度的升高而下降。在此基础上,提出了在热水出口温度为70℃下最优排气压力与环境温度和水入口温度的拟合关联式。该结果可为水入口温度为5~50℃、环境温度为-20~30℃的跨临界CO_2制热系统性能测试提供理论依据。  相似文献   

4.
为了提升跨临界CO2热泵系统的性能,利用喷射器替代节流阀植入系统中,在保证喷射器效率的前提下,对系统中各参数之间的相互影响进行了分析,通过建立SEC系统的热力学模型,分析了气冷器CO2出口温度、排气压力、蒸发温度等参数对系统制热系数COPh的影响。结果表明:气冷器CO2出口温度是决定常规系统引入喷射器是否有益的关键,随着排气压力(7~10 MPa)变化,气冷器CO2出口温度(30~55℃)存在一转换温度,只有当出口温度小于转换温度时才有助于提升COPh。同时为了保证系统的安全与运转正常,气冷器CO2出口温度在低于安全值(57℃)的前提下,还应不超过其转换温度。本文进一步研究了增加回热器对提升SEC的热力性能的效果,结果表明,在气冷器CO2出口温度大于31℃时在SEC系统中加入回热器可以有效提升热泵系统的制热性能。  相似文献   

5.
《流体机械》2013,(12):1-5
针对空气源热泵在制取高温热水时遇到的排气温度高、排气压力高、效率低等问题,采用环保混合工质BMR来降低排气温度和排气压力,并采用中间补气结构来改善热泵在高温加热段的性能。试验结果表明,80℃出水时压缩机的排气温度和排气压力得到有效控制,排气温度不超过106℃,排气压力不超过2.7MPa,并且整个过程中制热量较平稳。实现了高温热泵高效稳定运行。  相似文献   

6.
对太阳能热泵系统运行中压缩机的性能以及系统整体的运行性能进行了试验研究。试验结果表明蒸发温度和冷凝温度对于两者有很大的影响,蒸发温度越高,其制热性能越好,蒸发温度每提高4℃,系统制热量可以升高0.6~1kW。系统的制热水的出水温度达到了55℃,满足冬季的制热需求。系统的平均COP值达到4.1。  相似文献   

7.
设计了一种直热式空气源CO2热泵热水器系统,利用试验研究的方法研究了环境温度、气冷器冷却水入水温度及流量对系统性能的影响。试验结果表明:设计的空气源CO2热泵热水器系统,其系统能效系数(COPh)基本达到了国家标准;环境温度、气冷器冷却水入水温度以及流量对系统COPh、系统制热量以及气冷器出水温度的影响显著。通过调节热泵热水器系统低温热源温度、气冷器冷却水入水温度及流量,可改善系统COPh,提高系统制热量以及气冷器出水温度。  相似文献   

8.
采用中间喷射的涡旋热泵热水器专用压缩机及带经济器的系统设计,构成低温喷气增焓热泵热水器试验系统。试验结果表明:该系统能在-20~43℃环境下正常运行,制取65℃较高温度的热水。系统在环境温度高于20℃,且最高出水温度达到65℃时,能效比(COP)在3.4以上;在-15℃环境温度下COP依然能够保持在2.0以上;在-7℃~7℃段制热能力比目前常规热泵系统提高21%~28.9%。有效地扩大了(非二氧化碳)热泵系统的气候适应范围。  相似文献   

9.
为了研究跨临界CO_2热泵系统中间换热器对系统的影响,采用基于Modelica语言的仿真平台Dymola,建立了跨临界CO_2热泵的系统模型。从系统COP、制热量、蒸发压力和温度、气体冷却器CO_2出口温度以及过热度等方面,着重分析了中间换热器的有/无对系统性能的影响。结果表明:有中间换热器的系统运行性能更好,运行也更加稳定。在规定工况下,有中间换热器比无中间换热器的系统最优COP要高1.6%,且最优排气压力降低5%;中间换热器有效地降低了蒸发压力,由于系统质量流量较小,系统换热更加充分,从而减小了气体冷却器出口CO_2与水的换热温差;同时,有中间换热器的系统,存在过热度,过热度对热泵性能有直接影响,可以使排气温度升高,压缩机出口焓值增大,制热量增大。对中间换热器的分析研究,可以更加系统地了解CO_2热泵运行节点参数,为系统以及各元件设计提供参考。  相似文献   

10.
《流体机械》2017,(8):68-72
利用KULI软件建立汽车空调系统仿真模型,分析了R1234yf汽车空调系统和R134a系统的压缩机排气温度、制冷量和COP等性能差异,在此基础上,对系统进行优化,将中间换热器引入R1234yf系统中,分析中间换热器带来的性能影响。结果表明:直接替代的R1234yf系统制冷量和COP分别最大降低6%和7%,增加中间换热器后的R1234yf系统性能提升约4%。  相似文献   

11.
为提高跨临界CO2热泵热水机的效率,通过搭建跨临界CO2热泵系统试验台,研究其性能,并找出其运行规律。试验结果表明:当终止水温度恒定,在某一蒸发温度下,热泵系统的制热量随着高压侧压力的升高先升高后降低,系统的COP存在一个最大值,即存在一个最优高压侧压力Popt;蒸发温度越高,系统的COP越高;同轴套管式换热器的内管用螺旋管代替圆管后,系统运行更加稳定,COP也有提高。  相似文献   

12.
黄龙飞  曹锋 《流体机械》2021,49(1):88-96
近年来,由于良好的环境效益和高温出水能力,跨临界CO2循环在制冷热泵领域得到了广泛应用.但较高的回水温度会限制系统的整体性能,因此有必要进行技术改善,提升跨临界CO2循环系统性能.其中,在气体冷却器出口对工质进行过冷就是一种良好的办法.过冷的形式包含多种,如添加回热器、经济器、闪蒸罐及双系统过冷等,其中双系统又分成热电...  相似文献   

13.
热回收式溶液除湿蒸发冷却空调制冷系统理论研究   总被引:3,自引:0,他引:3  
提出了一种热回收式溶液除湿蒸发冷却空调系统,可以全年运行,借助蒸发冷却技术和直接接触换热器,大幅度降低了冷却水的消耗量,能够回收利用室内排风的冷热量,与同类系统相比,具有更高的运行效率,通过计算和分析,结果表明:蒸发式冷却器是影响冬季热回收量的主要因素,为进一步提高整个系统的性能,其蒸发器、蒸发式冷凝器、蒸发式冷却器应按冬季工况进行设计和匹配,在西安冬夏季空调室外计算参数下,系统的性能系数TCOP、COP和COPh分别为0.925、0.6516和4.17。  相似文献   

14.
针对目前能源紧缺及热泵热水器的发展现状,搭建了循环加热污水源热泵热水器实验台,维持蒸发侧污水源进水温度、冷凝侧和蒸发侧水流量恒定,测量记录保温水箱水温从15℃升高到55℃过程中的加热区间能耗、进出水温差、压缩机吸排气压力、电功率等参数。数据分析得出,系统平均能效比达到3.73,具有较好的节能性。  相似文献   

15.
对涡流分离热气体再加热的CO2热泵系统进行热力性能分析,并与相同运行工况下的节流降压CO2热泵系统的性能进行了对比,得出涡流分离热气体再加热的CO2热泵系统存在最优的高压压力,在最优的高压压力下,系统获得最大的制热性能系数。提高分离热气体质量比、中间压力、蒸发温度、涡流管制热效应,降低气体冷却器出口温度,涡流分离热气体再加热的CO2热泵系统的制热性能系数提高。随着热气体质量比的增加和气体冷却器出口温度的升高,涡流分离热气体再加热的CO2热泵系统最优的气体冷却器出口压力也升高。在热气体质量比仅为0.2时,涡流分离热气体再加热的CO2热泵系统相比节流降压CO2热泵系统,最佳的制热性能系数提高11%。随着热气体质量比的增加,差值会进一步增大。气体冷却器出口温度的升高,对涡流分离热气体再加热的CO2热泵系统制热性能系数的影响要小于对节流降压CO2热泵系统的制热性能系数的影响。  相似文献   

16.
《流体机械》2015,(12):77-82
对太阳能燃气热泵供暖系统及余热回收性能进行了研究。建立了系统的仿真模型,对套缸冷却系统和排烟余热回收器进行了模拟计算。分析了套缸冷却水流量的变化规律、确定了排烟余热回收比(排烟余热中回收的热量占排烟余热总热量的比例)、热回收循环水流经套缸冷却器及排烟余热回收器后的温升情况,最后以沈阳地区某建筑为例,对系统余热回收的经济性进行了分析。结果表明:发动机转速每增加100r/min,所需的套缸冷却水流量增0.285~1.21g/s;排烟余热回收比为0.7时,系统可以获得最大的能源利用率(是指有效利用部分与总能源量的比值);热回收循环水流经套缸冷却器后温度上升2~5℃,在最佳的余热回收比下,热回收循环水流经排烟余热回收器后温度可提高2℃左右;运行时间超过2年时,余热回收型太阳能燃气热泵比非余热回收型太阳能燃气热泵更加经济。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号