首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
改进的宽谱段车尔尼-特纳光谱成像系统设计   总被引:3,自引:1,他引:2  
针对传统的车尔尼-特纳光谱仪像散较大的缺点,基于像差理论,提出了一种改进的车尔尼-特纳光谱成像系统.将平面光栅置于发散光中,利用平面光栅产生的像散来补偿物镜产生的像散.推导出了宽谱段像散同时校正条件,实现了宽谱段像散的同时校正.具体分析了像差校正的原理和方法,编制了初始结构快速计算程序.作为实例,设计了一个谱段为540~780 nm的宽谱段像散同时校正车尔尼-特纳光谱成像系统,利用光学设计软件ZEMAX-EE对该光谱成像系统进行了光线追迹和优化设计,并对设计结果进行了分析.结果表明,全视场调制传递函数在整个工作波段均达到0.52以上,实现了宽谱段像散的同时校正,并获得了良好的成像质量,满足了设计指标要求,结果也证实了所提出的改进方法是可行的.  相似文献   

2.
根据宽视场大相对孔径成像光谱仪的应用要求和技术指标,采用离轴Schwarzschild望远成像系统和双Schwarzschild光谱成像系统匹配的结构型式,设计了一个视场为28°、相对孔径为1/2.5、工作波段为0.4~1μm的机载成像光谱仪光学系统;根据双Schwarzschild光谱成像系统的像散校正条件计算了初始结构参数。然后,利用光学设计软件ZEMAX-EE进行了光线追迹和优化设计,并对设计结果进行了分析与评价。结果显示:光谱成像系统中心波长和边缘波长88%以上的能量集中在一个探测器像元内;谱线弯曲和谱带弯曲均小于像元的5%,便于光谱和辐射定标;成像光谱仪全系统在各个波长的光学传递函数均达到0.59以上,完全满足设计指标要求。该成像系统体积小、重量轻,非常适合航空遥感应用。  相似文献   

3.
董科研  李欣航  安岩 《光学精密工程》2016,24(10):2384-2391
针对宽波段Czerny-Turner结构像散校正存在的问题,分析了影响光学系统像散校正的主要因素。基于发散光束照射平面光栅的像差理论,应用Matlab软件模拟分析了光学系统产生像散的原因和相应抑制方法的不足。讨论了了准直镜离轴角与聚焦镜离轴角的角度差值α和光学系统像散S之间关系,理论模拟了α取不同值时,宽波段C-T结构的全波段像散校正情况。为了验证理论分析的正确性,设计了光谱段为900~1 700nm的消像散型光学系统,利用光学设计软件Zemax对该波段的光学系统进行了光线追迹和设计优化,并对设计结果进行处理和分析。结果显示:随着角度差值的逐渐增大,短波波段像散校正能力越来越强,像散校正能力提高了1.6倍左右;长波波段像散束缚能力越来越弱,像散校正能力平均降低了1.27倍左右。得到的结果表明:角度差值的合理选取可以为宽波段Czerny-Turner结构的像散校正提供理论指导。  相似文献   

4.
大相对孔径宽波段Dyson光谱成像系统   总被引:1,自引:0,他引:1  
提出了一种改进型Dyson光谱成像系统,以克服传统Dyson光谱成像系统焦平面探测器安置困难的缺点.首先,基于折射球面罗兰圆理论,提出了这种改进型Dyson光谱成像系统的光学设计方法.然后,利用MATLAB软件编制了初始结构参数快速计算程序.作为实例,设计了一个相对孔径为1/2,波段为200~1 000 nm的Dyson光谱成像系统.利用自己编制的MATLAB程序计算了初始结构参数,利用光学设计软件ZEMAX-EE对该光谱成像系统进行了光线追迹和优化设计,并对设计结果进行分析.分析结果表明,在整个工作波段(200~1 000 nm)内,点列图半径均方根值小于4.2 μm,实现了大相对孔径宽波段像散同时校正,在宽波段内同时获得了良好的成像质量,满足设计指标要求.得到的结果验证了所提出的光学设计方法是可行的.  相似文献   

5.
中阶梯光栅光谱仪的光学设计   总被引:5,自引:4,他引:1  
为了在更宽波段范围内获得较高的分辨率,实现全谱直读,对中阶梯光栅光谱仪进行了研究。简述了中阶梯光栅及中阶梯光栅光谱仪的基本原理,分析并比较了这种光谱仪与普通平面闪耀光栅光谱仪的区别。利用光学成像原理与消像差理论设计了Czerney-Turner结构形式的中型高分辨率中阶梯光栅光谱仪原理样机的光学系统。该光学系统工作在原子谱线最为密集的200~500nm波长处;为简化计算,在设计中消除了350nm波长的所有像差;光线对中阶梯光栅在准Littrow条件下入射,以获得高衍射效率;使用折反射棱镜作为交叉色散元件来分离重叠的级次,在CCD探测器上获得了二维光谱面。该光学系统有较好的平场特性及点对点成像能力,在整个工作波长分辨率可达到2000~15000,满足设计要求。该仪器可用于原子发射和吸收光谱的研究工作,通过替换不同的探测器及增加外围电路与软件平台,仪器的工作性能可进一步提高。  相似文献   

6.
针对基于固定光栅和阵列探测器的常规微型近红外光谱仪成本高、光谱范围窄等问题,提出了一种基于集成扫描光栅微镜的双探测器微型近红外光谱仪。该系统采用自制的集成扫描光栅微镜作为核心分光部件,可同时实现扫描与分光功能,光学系统设计利用两个聚焦镜和两个InGaAs单管探测器的空间布局避免不同光路之间的相互干扰,可实现双通道同时、独立工作,此外双通道探测器前内置不同截止波长的带通滤色片消除光谱重叠。采用光线追迹法建立了理论模型计算光学系统的初始结构参数;利用ZEMAX完成了光学系统的优化设计并给出优化结构参数。测试结果表明,该仪器工作波长范围:800~2 532 nm,分辨率:小于12 nm(800~1 600 nm)、小于17 nm(1 600~2 532 nm),整体尺寸:145 mm×135 mm×75 mm,具有宽光谱、小体积、低成本等优势。  相似文献   

7.
针对不同激光波长激发测试样品所需拉曼光谱范围的差异性问题,同时为了保证拉曼光谱仪的小型化及高分辨率需求,提出一种以Czerny-Turner光路结构为基础的微型拉曼光谱仪,通过Zemax光学设计软件对光谱仪的准直镜、聚焦镜、柱面镜、光栅以及CCD的倾角及距离进行了优化。该仪器激光波长为633 nm,光谱范围为640~800 nm。进一步优化光栅旋转角度并配合聚焦镜,可使此光学系统同时适用于激光波长532 nm、光谱范围540~650 nm和激光波长785 nm、光谱范围790~1 000 nm两个波段。拉曼光谱仪分辨率为0.1 nm,该光谱仪在保证高分辨率的情况下解决了不同波段范围光学结构差异性大而导致光机设计很难整合在一起的问题。  相似文献   

8.
CO2探测仪光学系统设计   总被引:6,自引:3,他引:3  
郑玉权  高志良 《光学精密工程》2012,20(12):2645-2653
设计并架构了CO2探测仪的光学系统。通过对比国外典型大气温室气体探测仪采用的光学系统,总结了光栅与傅里叶变换两种分光方法的优缺点,确定设计的CO2探测仪采用大面积光栅色散光谱仪系统,该光学系统包括前置光学系统和三通道光栅光谱仪系统两部分。前置光学系统由无焦双离轴抛物面系统、2个分束器和3个聚焦透镜组组成,采用了多种消杂光措施,有效抑制了杂散光。光栅光谱仪的3个通道采用相同的结构,工作在相同的偏离角下;根据光栅方程推导了固定偏离角下光栅参数的计算方程,确定了3个通道的光栅参数;透镜采用低膨胀熔石英材料;大面积光栅工作在大入射角、大衍射角状态,工作波段内的光栅衍射效率可达90%以上。对光学系统的分析测试显示:通过在光谱仪系统放置0级光陷阱等消杂光措施,可将杂散光控制在10-5以下,空间方向的MTF大于0.9,光谱分辨率达到0.035nm(@760nm),实现了20点同步观测。由于相对孔径较大(F1.8),提高了集光能力。结果表明,设计的光学系统满足温室气体探测的技术指标要求。  相似文献   

9.
为了满足光栅型光谱仪高分辨率、小型化以及宽谱段的需求,设计了一种基于Czerny-Turner(C-T)型光路结构的拉曼光谱仪。通过Zemax光学设计软件对聚焦镜、准直镜、柱面镜、CCD的倾角和间距进行了自动优化,并设置合理操作数来消除系统的球差和彗差,利用柱面镜来消除系统像散。所设计的拉曼光谱仪波段范围在80~ 3 200 cm-1,运用了Zemax操作数平衡光谱仪分辨率、工作波段和体积三个重要指标。设计结果表明,该仪器在785 nm波长激发下,全波段光谱分辨率优于3 cm-1,光学结构体积为70 mm×80 mm×25 mm。  相似文献   

10.
受探测器发展水平的限制,以中阶梯光栅光谱仪为分光模块的ICP-AES电感耦合等离子体原子发射光谱仪(ICP-AES)难以实现宽波段内多元素的同时测量。本文对现有中阶梯光栅光谱仪进行了改进,设计出一种适用于ICP-AES多元素同时测量的分波段式中阶梯光栅光谱仪。通过改变棱镜的入射角度,将系统波长扩展为200~900 nm,光谱分辨率为25 000,突破了现有探测器尺寸的限制,实现了宽波段范围内的多元素快速测量。将中阶梯光栅光谱仪与固态ICP光源组合,进行了系统波长标定与化学试样测试。实验结果表明:波长测试误差小于0.01 nm,满足化学元素精确判读要求;分波段式中阶梯光栅光谱仪在保持原有仪器性能的前提下,增宽了仪器的有效光谱探测范围,为多元素的同时测量提供了有效手段。  相似文献   

11.
王欣  刘强  舒嵘 《光学精密工程》2019,27(3):533-541
根据大视场和快焦比空间遥感高光谱成像仪的研究目标,采用折叠三反施密特望远镜和自由曲面Offner凸面光栅光谱仪结构,设计了一个视场为5°,焦比为2,工作谱段在400~1 000nm,光谱分辨率为5nm的星载高光谱成像仪光学系统。推导了非对称非球面施密特主镜的理论计算方法,介绍了镜面的制造方法。利用Zemax光学设计软件进行了光线追迹和优化设计,结果显示光谱畸变0.88%,光谱弯曲1/3探测器像元,所有谱段的光学传递函数均大于0.8,满足星载高光谱成像仪的技术要求。施密特系统结构简单,仅含有一个非球面,在大视场工作时具有像质优良和畸变小的特点,且中心遮拦比小、体积紧凑,适合未来大视场快焦比的大口径星载遥感应用。  相似文献   

12.
星载高光谱成像仪光学系统的选择与设计   总被引:7,自引:4,他引:7  
郑玉权  王慧  王一凡 《光学精密工程》2009,17(11):2629-2637
本文概述了目前高光谱成像仪所采用的光学系统结构,分析讨论了棱镜色散、光栅色散、傅立叶变换三种主流高光谱成像仪分光方式的结构原理和优缺点,棱镜色散光能利用率高,但体积大,棱镜材料受空间环境变化影响较大,光栅色散效率低,但体积小,受环境影响小,傅立叶变换光谱成像系统由于分光棱镜的存在,能量至少损失50%以上。文中对国内外高光谱成像仪采用较多的Offner凸光栅光谱成像系统进行了论述,根据应用目标设计了一个离轴三反射镜望远系统和变倍Offner凸光栅组合的高光谱成像仪光学系统,该系统具有体积小、成像质量好、无光谱畸变的优点,通过加大光学系统的相对孔径,增加系统的入射光能量,弥补了光栅衍射效率低的缺点。  相似文献   

13.
针对空间外差光谱技术测量光谱范围较窄(10nm左右),制约其应用范围的问题,提出了一种光栅-平面镜结构的可调式空间外差光谱仪系统。该系统将传统的双平面光栅式空间外差光谱仪中的一块光栅换成平面镜,让另一块光栅可旋转来组成可调式结构;通过旋转光栅切换测量波段,展宽其测量范围;对平面镜施加微小俯仰角以确保谱图还原的单值性;从而拓展了仪器的应用范围。搭建了原理样机并对其性能进行了实验验证。结果表明,设计的仪器的光谱范围达到了100nm左右,分辨率优于0.29nm。该仪器结构简单,光栅制作难度低,易于实现谱图还原。另外,通过增加光栅旋转切换次数和引入抑制杂光措施等手段,还可进一步展宽波段范围,提高系统光谱分辨率。  相似文献   

14.
本研究为飞行时间二次离子质谱仪(TOF-SIMS)设计了一种具有高空间分辨率的样品光学成像系统。该系统由一种改进的Schwarzschild双反射系统、45°反射镜、变焦镜头及CCD图像传感器构成。采用ZEMAX软件对传统Schwarzschild模型进行计算和改进,得出系统优化参数并进行仿真验证。仿真结果表明:系统最佳的成像分辨率达1 μm,极限分辨率为0.4 μm,RMS半径小于艾里斑直径,波像差满足瑞利判据,成像质量良好。  相似文献   

15.
为了抑制边缘纯转动拉曼光谱成像偏差,提出了一种高精度测温拉曼激光雷达光谱仪光学系统设计。该系统利用非球面透镜组对光谱仪成像球差进行校正,针对光谱仪10mm/nm的线分辨率要求,采用双光栅结构设计并对测温拉曼光谱仪各参数进行光线追迹,拟合得到双光栅的入射角、准直镜焦距和聚焦镜焦距的最优值。将拟合最优化结果代入Zemax软件进行优化分析,结果显示单个成像光谱成像宽度控制在0.771 5mm,间隔0.1nm的纯转动连续光谱成像中心间隔可以达到1mm,满足了线阵探测器对成像质量的要求。通过计算在J=6级的纯转动拉曼后向散射信号对瑞利-米散射信号实现了108抑制,达到了高精度纯转动拉曼激光雷达测温的目的,解决了目前双光栅光谱技术无法达到提取355nm波段纯转动拉曼高光谱精度的要求,对测温拉曼激光雷达的技术发展有着深远的意义。  相似文献   

16.
在小型化成像光谱仪的研制和应用中,如何同时实现轻量化、高地面分辨率和高信噪比是目前亟待突破的技术难题.本文通过将线性渐变滤光片分光技术和数字域时间延迟积分技术相结合,并对镜头进行紧凑化处理,设计了一款工作波段为403~988 nm、平均光谱分辨率为8.9 nm、系统总质量为7 kg的轻小型星载高光谱成像光谱仪.仿真和实...  相似文献   

17.
针对成像光谱仪通过狭缝进行线视场成像时存在的孔径较小、光学透过率较低等问题,研究了一种基于棱镜-光栅型分光结构的大孔径面视场成像光谱仪。该棱镜-光栅成像光谱仪采用表面浮雕型透射光栅,极大地降低了光栅的制作难度与成本。大孔径面视场的成像光谱仪相较于线视场成像光谱仪有较高光学效率和时间效率。但是面视场成像光谱仪的色畸变与谱线弯曲较难校正。本文将前端望远系统与分光系统进行一体化设计,满足远心光路匹配和孔径匹配,较好地校正了面视场光谱成像系统中的谱线弯曲和色畸变。并且通过加入非球面反射镜及校正镜很好的校正了由于大孔径面视场所引入的非对称性离轴像差。结果表明,设计的大孔径面视场PG成像光谱仪光谱波段范围400~1 000nm,光学调制传递函数达到0.65以上,光谱分辨率达2.5nm,全谱段不同视场的谱线弯曲小于5μm,色畸变小于8μm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号