首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
激光跟踪仪测角误差的现场评价   总被引:6,自引:0,他引:6  
激光跟踪仪是基于角度传感和测长技术相结合的球坐标测量系统,其长度测量采用激光干涉测长方法,可直接溯源至激光波长,因此,激光跟踪仪的长度测量精度远高于角度测量精度,相对而言,测角误差就成为评价跟踪仪测量精度的重要指标。为了对现场测量激光跟踪仪的测角误差进行快速有效地评价,采用跟踪仪多站位对空间中测量区域内若干个被测点进行测量,与传统基于角度交汇原理的多站位冗余测量不同,利用各站位所观测的高精度测长值建立误差方程,并通过测长方向的矢量位移对跟踪仪测长误差进行约束,获得被测点三维坐标在跟踪仪水平角和垂直角方向上的改正值,以此来评价激光跟踪仪的测角误差。通过Leica激光跟踪仪AT901-LR进行了多站位测角误差评价实验,在现场测量条件下,跟踪仪水平和垂直方向测角误差约为0.003 mm/m(1σ),符合跟踪仪的测量误差特性。  相似文献   

2.
激光跟踪仪因测量范围大、精度高等优势被广泛应用于大型航空构件的大尺寸测量.然而,随着测量范围的增大,其测量精度将受到测角误差的严重影响.为了实现激光跟踪仪测角误差的准确评估,提出了一种基于非水平位移的激光跟踪仪测角误差标定方法.以空间任意运动位移为约束,采用三坐标测量机与高精度位移台分别对空间任意位移的角度与长度进行高...  相似文献   

3.
激光跟踪仪几何误差修正   总被引:11,自引:0,他引:11  
本文推出了激光跟踪仪主要几何误差数学模型,给出了误差分离方法及修正方法,首次在激光跟踪仪全程35m范围内进行了比长实验和误差修正实验,得到了LTD500大范围空间测长精度,同时验证了误差修正的正确性和有效性。  相似文献   

4.
基于激光跟踪仪的数控机床几何误差辨识方法   总被引:8,自引:0,他引:8  
激光跟踪仪作为一种三维测量仪器在工业测量中得到广泛应用,利用激光跟踪仪采用多站分时测量方法实现数控机床几何误差的快速、高精度检测.该方法通过控制机床按设定的路径在3D空间进给,一台激光跟踪仪先后在不同的基站位置对机床相同的运动轨迹进行测量,基于全球定位系统(Global positioning system,GPS)定位原理,确定基站的相对空间位置与各测量点的空间坐标,然后辨识出机床的各项几何误差.通过建立多站分时测量机床精度的数学模型,给出多站分时测量的算法原理,并推导出机床各项误差的分离算法,同时通过仿真验证该误差分离算法的可行性.试验表明,激光跟踪仪采用多路分时测量方法在4h内完成对一台数控铣床的精度检测,并分离出铣床的各项误差,该方法具有快速、精度高等优点,在中高档数控机床的精度检测中具有一定的应用前景.  相似文献   

5.
激光跟踪仪精密跟踪系统的设计   总被引:1,自引:0,他引:1  
对激光跟踪仪的跟踪伺服控制系统进行了整体研究并给出了总体设计方案。针对跟踪目标的精密探测问题,研究了新型探测手段以及微弱光电信号的精细调理技术与数字滤波方法,使得脱靶量探测稳定性优于±2.0μm。针对跟踪角度精密测量问题,设计了圆光栅数据采集系统,实现了角度脉冲的细分、辨向与准确计数;基于谐波分析方法建立了跟踪过程中的误差补偿模型,将角度测量精度由3.5″提高到1.5″。建立了跟踪伺服电机的数学模型,分析了电流环在跟踪控制中的作用机理,提出了电流、速度、位置三闭环控制结构和复合跟踪控制策略。跟踪实验表明:系统最远跟踪距离不小于41.7m,跟踪速度不低于2.0m/s。该项技术还能为空间动态目标跟踪、激光通信等提供有益借鉴。  相似文献   

6.
激光精密跟踪测角误差分析与计算   总被引:1,自引:0,他引:1  
叙述了用四象限探测器进行激光精密跟踪测角的原理,并对其误差进行了分析和计算.  相似文献   

7.
基于球杆仪数控机床误差补偿方法研究   总被引:2,自引:1,他引:2  
分析了基于球杆仪的数控机床误差补偿测试原理 ,讨论了由于角度偏差引起的误差 ,指出基于球杆仪误差补偿模型的缺陷 ,提出采用该种模型必须精确测量角度值  相似文献   

8.
介绍激光跟踪仪精度校验方法。用激光跟踪仪与高精密立式加工中心比对来测量激光跟踪仪在IFM(干涉测量模式)模式下精度,为激光跟踪系统的验收提供依据,同时为激光跟踪仪误差补偿提供数据支持。  相似文献   

9.
针对航空制造业中面向大尺寸空间的激光跟踪仪测量不确定度评估问题,提出了综合建站误差的激光跟踪仪测量不确定度评估方法.在构建激光跟踪仪测量模型与误差模型的基础上,将测量设备建站误差引入优化模型,并通过跟踪仪建站、空间点测量等环节,对受建站误差和测量误差双重因素影响的跟踪仪空间点测量不确定度进行了仿真测试和数据分析.以某工...  相似文献   

10.
为实现大空间域激光跟踪仪的高精度测量,本文针对由转站误差导致的激光跟踪仪分时多基站测量精度难保证的问题,提出了基于多站位下单台激光跟踪仪测量误差的转站误差模型与转站参数修正的补偿方法。首先分析了激光跟踪仪测量误差的来源以及具体形式,阐述了激光跟踪仪测量误差影响空间任意点测量精度的具体形式;其次分析了激光跟踪仪的随机测量误差和系统测量误差对多基站转站参数求解精度的影响。在此基础上,建立了考虑随机、系统测量误差的激光跟踪仪多基站转站误差模型和转站参数误差补偿模型。蒙特卡洛仿真结果表明:当激光跟踪仪的长度测量误差为0.5μm/m,角度测量误差为5μm+6μm/m时,最大转站误差为0.174 7mm,补偿后最大转站误差为0.04mm,转站精度提高了77%。分时多基站转站测量实验结果表明:直接转站测量时最大转站误差为0.054 2mm,补偿后转站误差为0.033 1mm,转站精度提升了38.9%。激光跟踪转站补偿后测量精度有明显的提高。  相似文献   

11.
熊平 《机电工程》2014,(2):139-144
针对大型数控龙门铣床几何误差的问题,建立了大型数控龙门铣床的几何误差模型,分析了大型数控龙门铣床的几何误差源;利用API(T3)激光跟踪仪高精度大尺寸的测量特点及数据处理能力,提出了X、Y、Z轴线位移误差、角位移误差及各轴间垂直度误差的辨识算法,通过激光测量与计算准确地辨识了大型数控龙门铣床的几何误差;建立了大型数控龙门铣床加工空间几何误差数学模型,采用基于对象的事件驱动机制的程序设计语言Visual Basic开发了几何误差补偿软件,实现了几何误差补偿;现场检测了大型数控龙门铣床空行程平面运动轨迹及工件的平面度。研究结果表明,该方法使平面加工精度提高了50.77%,并验证了几何误差模型的正确性及几何误差补偿方法的有效性。  相似文献   

12.
激光跟踪测量系统跟踪转镜的误差分析   总被引:3,自引:1,他引:3  
激光跟踪测量系统是目前最新型的便携式空间大尺寸坐标测量系统,可对空间运动目标进行跟踪并实时测量其三维空间坐标,具有精度高、范围大、实时快速等特点。然而,激光跟踪测量系统中跟踪转镜的几何误差严重影响了其测量精度;所以激光跟踪测量系统在使用前必须对其进行建模和误差分析。在全面研究了激光跟踪测量系统结构和工作原理的基础上,建立了系统运动学模型和跟踪转镜中心偏移数学模型。详细分析了系统测量中基点位置变动误差、转镜跟踪目标反射器跟踪误差和转镜反射面与激光束不垂直误差等。结果表明跟踪转镜中心偏移、回转轴不对称、基点位置变动、光束反射点与基点不重合是导致测量误差的主要原因。因此,在跟踪转镜结构设计中,为保证激光束反射点与基点位置重合及转镜旋转跟踪目标反射器时基点空间位置保持不变,应尽量减少跟踪转镜旋转点与镜面之间的距离。  相似文献   

13.
Rotationally symmetric triangulation (RST) sensor has more flexibility and less uncertainty limits because of the abaxial rotationally symmetric optical system. But if the incident laser is eccentric, the symmetry of the image will descend, and it will result in the eccentric error especially when some part of the imaged ring is blocked. The model of rotationally symmetric triangulation that meets the Schimpflug condition is presented in this paper. The error from eccentric incident laser is analysed. It is pointed out that the eccentric error is composed of two parts, one is a cosine in circumference and proportional to the eccentric departure factor, and the other is a much smaller quadric factor of the departure. When the ring is complete, the first error factor is zero because it is integrated in whole ring, but if some part of the ring is blocked, the first factor will be the main error. Simulation verifies the result of the analysis. At last, a compensation method to the error when some part of the ring is lost is presented based on neural network. The results of experiment show that the compensation will make the absolute maximum error descend to half, and the standard deviation of error descends to 1/3.  相似文献   

14.
使用传统公共点定向方法很难在狭小、受限空间下完成对大尺寸测量仪器的定向,故本文提出了一种受限空间下球坐标测量系统的双面互瞄定向方法,并以激光跟踪仪为例进行了理论分析和实验验证。该方法结合激光跟踪仪的测量原理和使用特点,通过激光跟踪仪本体测头的运动特性构建几何约束,仅要求测量仪器之间相互可视,便可依靠较小公共视场完成仪器定向。阐述了该方法的数学建模过程,研究了定向优化算法,并在上海光源环形测量控制网建立过程中进行了相关实验验证。结果表明:该方法在仪器相距5m以内时,参考点转站误差优于0.12mm,定向旋转角误差不超过1.5″。与频繁转站的传统方法相比,可在保证精度的同时,极大地提高现场测量效率。该方法亦可推广应用于其它单站坐标测量系统。  相似文献   

15.
激光技术作为重要的测量手段,已经被广泛的应用到精密运动控制系统中。激光测量误差直接影响到运动控制系统的控制精度,其中阿贝与余弦误差等几何误差对激光测量精度影响显著,在精密运动控制中必须予以补偿与校正。以精密运动台多维激光测量模型为基础,介绍了阿贝与余弦误差产生原因。在不考虑激光干涉仪的加工和安装误差的情况下,推导了运动台存在倾斜角度下的阿贝与余弦误差计算模型,在此基础上给出了激光测量数据误差补偿模型,以实现测量数据的实时补偿与修正。算法已经成功应用在实例中,表明该算法的有效性与可靠性。  相似文献   

16.
三轴激光陀螺温度误差动态建模及补偿技术   总被引:1,自引:2,他引:1  
提出了一种新的三轴激光陀螺温度误差动态建模及测试方案,并进行了实验。实验结果表明,新的动态模型能够对大变温率、大范围温变条件下陀螺的漂移进行有效补偿,且补偿后陀螺精度在全温度范围内优于0.05 °/h 。与静态模型相比,动态建模方法具有测试时间短、模型精度高及易于工程实现等优点。  相似文献   

17.
激光跟踪测量系统是目前最新型的便携式空间大尺寸坐标测量系统,利用激光干涉测长、精密测角及目标跟踪技术,可对任意点的空间位置进行实时跟踪测量。然而,目标反射器接收角度的大小严重影响了激光跟踪测量系统角度测量精度,为解决激光跟踪测量系统在动态测量中因角锥棱镜逆反射器接收角度范围限制而导致无法测量问题,研制开发了一种能使激光跟踪测量系统在动态条件下连续测量的角度自动校正装置。它主要由精密圆形导轨和角度方位自动调节机构组成,能使角锥棱镜在动态测量过程中始终指向激光跟踪测量系统,从而实现在动态条件下的连续工作。最后利用研制角度自动校正装置对激光跟踪测量系统进行了角度误差补偿实验,结果表明该装置使激光跟踪测量系统的水平角测量误差由34.69µm减小到9.71µm,垂直角测量误差由35.43µm减小到10.03µm,从而有效地提高了激光跟踪测量系统的角度测量精度。  相似文献   

18.
激光跟踪仪多边测量的不确定度评定   总被引:1,自引:0,他引:1  
激光跟踪仪多边测量是大型高端装备制造现场溯源的重要手段,正确评定其不确定度是确保制造过程量值统一、结果可靠的关键。本文提出了一种准确、快速的激光跟踪仪多边测量的不确定度评定方法。从仪器误差、环境干扰及靶球制造误差等方面分析激光跟踪仪多边测量的不确定度来源。针对多边测量的输出量为多维向量的特点,重点研究基于多维不确定度传播律(GUM法)的不确定度合成方法,同步评定目标点坐标和跟踪仪站位的不确定度。最后,介绍了点到点长度的不确定度计算方法。实验表明:GUM法评定的不确定度结果与蒙特卡洛法(MCM法)的结果相比,坐标不确定度偏差小于0.000 2 mm,相关系数偏差小于0.01,满足数值容差,且GUM法用时仅为MCM法的0.08%;点到点长度测试的En值均小于1。因此,基于GUM法评定激光跟踪仪多边测量的不确定度具有可行性及高效性,且评定结果正确、可靠。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号