首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ergonomics》2012,55(8):939-953
Specifying comfortable driving postures is essential for ergonomic design and evaluation of a driver workspace. The present study sought to enhance and expand upon several existing recommendations for such postures. Participants (n = 38) were involved in six driving sessions that differed by vehicle class (sedan and SUV), driving venue (laboratory-based and field) or seat (from vehicles ranked high and low by vehicle comfort). Sixteen joint angles were measured in preferred postures to more completely describe driving postures, as were corresponding perceptual responses. Driving postures were found to be bilaterally asymmetric and distinct between vehicle classes, venues, age groups and gender. A subset of preferred postural ranges was identified using a filtering mechanism that ensured desired levels of perceptual responses. Accurate ranges of joint angles for comfortable driving postures, and careful consideration of vehicle and driver factors, will facilitate ergonomic design and evaluation of a driver workspace, particularly when embedded in digital human models.  相似文献   

2.
《Ergonomics》2012,55(9):1149-1166
The positions which car drivers adopt when driving will depend on their anthropometric characteristics, the range and type of adjustment available from the vehicle package and their preferred driving posture. The design and testing of systems to protect occupants in car crashes assumes that the size and position of the driver is ‘normal’ or ‘average’, although there is some accommodation for adjustability. If, however, the occupant protection system had information on the driver's chosen seat position, on whether the driver was particularly large or small and on whether the driver was sitting close to or further from the steering wheel, in a crash the system could tailor its performance and enhance the protection offered. This study investigated whether it was possible to predict the physical characteristics of the driver and the driver's position in relation to the steering wheel, from data that could be collected by sensors in the seat and seat mounting. In order to do this, anthropometric characteristics of drivers and their usual seated position in their own vehicle were measured and analyses were undertaken to identify whether there were any relationships between the driver-related and the vehicle-related measures. The results showed that it was possible to predict drivers' head and chest positions relative to injury-producing features of the vehicle such as the steering wheel (and hence the airbag) and to predict some physical dimensions of drivers.  相似文献   

3.
Low back pain (LBP)3 is one of the most important features of discomfort in prolonged sitting postures. This is evidenced by an increase in the number of postural changes called macro-movements. The focus of study was the frequencies of macro repositioning movements in prolonged sitting posture resulting from the perception of discomfort caused by low-back pain. Eighteen (18) drivers performed driving tasks for a period of 90 min. The results indicate that LBP participants performed more movements (10.52 rep/h), compared to without low back pain participants (8.52 rep/h). However, the latter moved more than expected due to joint macro movements of the pelvis and trunk. LBP subjects generally performed macro-repositioning movements of the trunk only, while without low back pain (WLBP)4 subjects moved pelvis and trunk simultaneously. Although the WLBP participants moved less than those with LBP symptoms, they applied different movement strategies which should be considered in further research. Finally, the authors also propose that future research should be directed towards determining the influence of these lumbo pelvic movements when provided in a controlled manner, to improve comfort in seats and to help manufactures to offer better ergonomic seats.Relevance to industryAccording to the findings of this study, control of lumbo pelvic movements could be used to improve the design and production of ergonomic seats for driving activities.  相似文献   

4.
This article presents a method of analyzing how drivers' anthropometric data are best accommodated by a specific driver‐vehicle interface. Three‐dimensional (3‐D) manikins with 18 links were developed using anthropometric data for the U.S. 95th percentile male and 5th percentile female. In addition, an adjustable seating buck was constructed to control 7 package variables. After the manikins were positioned in each driving environment, 3‐D Cartesian coordinates for the manikins' articulations were determined using a coordinate measuring machine. The data were then converted into joint angles to suggest suitable driving environments that consider appropriate driving postures. © 2004 Wiley Periodicals, Inc. Hum Factors Man 14: 269–284, 2004.  相似文献   

5.
《Ergonomics》2012,55(4):589-591
Abstract

Data from a previous study of soldier driving postures and seating positions were analysed to develop statistical models for defining accommodation of driver seating positions in military vehicles. Regression models were created for seating accommodation applicable to driver positions with a fixed heel point and a range of steering wheel locations in typical tactical vehicles. The models predict the driver-selected seat position as a function of population anthropometry and vehicle layout. These models are the first driver accommodation models considering the effects of body armor and body-borne gear. The obtained results can benefit the design of military vehicles, and the methods can also be extended to be utilised in the development of seating accommodation models for other driving environments where protective equipment affects driver seating posture, such as vehicles used by law-enforcement officers and firefighters.

Practitioner Summary: A large-scale laboratory study of soldier driving posture and seating position was designed to focus on tactical vehicle (truck) designs. Regression techniques are utilised to develop accommodation models suitable for tactical vehicles. These are the first seating accommodation models based on soldier data to consider the effects of personal protective equipment and body-borne gear.  相似文献   

6.
The ‘looked-but-failed-to-see’ phenomenon is crucial to driving safety. Previous research utilising change detection tasks related to driving has reported inconsistent effects of driver experience on the ability to detect changes in static driving scenes. Reviewing these conflicting results, we suggest that drivers' increased ability to detect changes will only appear when the task requires a pattern of visual attention distribution typical of actual driving. By adding a distant fixation point on the road image, we developed a modified change blindness paradigm and measured detection performance of drivers and non-drivers. Drivers performed better than non-drivers only in scenes with a fixation point. Furthermore, experience effect interacted with the location of the change and the relevance of the change to driving. These results suggest that learning associated with driving experience reflects increased skill in the efficient distribution of visual attention across both the central focus area and peripheral objects.  相似文献   

7.
《Ergonomics》2012,55(2):137-153
This article is considered relevant because: 1) car driving is an everyday and safety-critical task; 2) simulators are used to an increasing extent for driver training (related topics: training, virtual reality, human – machine interaction); 3) the article addresses relationships between performance in the simulator and driving test results–a relevant topic for those involved in driver training and the virtual reality industries; 4) this article provides new insights about individual differences in young drivers' behaviour. Simulators are being used to an increasing extent for driver training, allowing for the possibility of collecting objective data on driver proficiency under standardised conditions. However, relatively little is known about how learner drivers' simulator measures relate to on-road driving. This study proposes a theoretical framework that quantifies driver proficiency in terms of speed of task execution, violations and errors. This study investigated the relationships between these three measures of learner drivers' (n = 804) proficiency during initial simulation-based training and the result of the driving test on the road, occurring an average of 6 months later. A higher chance of passing the driving test the first time was associated with making fewer steering errors on the simulator and could be predicted in regression analysis with a correlation of 0.18. Additionally, in accordance with the theoretical framework, a shorter duration of on-road training corresponded with faster task execution, fewer violations and fewer steering errors (predictive correlation 0.45). It is recommended that researchers conduct more large-scale studies into the reliability and validity of simulator measures and on-road driving tests.  相似文献   

8.
Recent studies have suggested that ergonomic factors may contribute to risks experienced by overhead crane operators. However, there are few studies that provide a comprehensive overview of the physical demands of overhead crane operation. This study aimed to provide this information by quantifying muscular, postural, and upper limb movement demands of overhead crane operation including examination of muscle activation and trunk posture by task. Trunk posture, upper limb movement demands and muscle activation in the trunk and upper limbs were quantified for seven overhead crane operators. Trunk posture was quantified using trunk angle and joystick motion requirements were determined using camera data. Muscle activation was measured bilaterally using surface EMG for the upper trapezii, anterior deltoids, posterior deltoids, biceps brachii, triceps brachii, flexor carpi radialis and erector spinae. Lastly, joystick force requirements were assessed using a spring scale. High upper limb and trunk muscle loading were observed when compared to joystick use in other heavy machinery, in part due to the forward, trunk-flexed position required to adequately view the workspace, and the increased force requirements of the joysticks. Joystick input force requirements were 9–31 N for the right-hand joystick and 11–40 N for the left-hand joystick. Operators maintained a forward trunk flexion (>20°) for all subtasks which suggests that trunk posture might play a role in sustained trunk muscle activation. Results suggest that the primary issue with overhead crane cab operation is upper limb and trunk muscle loading. Results confirm the need to investigate muscle load reduction strategies such as camera systems to help reduce the need for trunk flexion. Other design modification suggestions include reducing the joystick input force and displacement requirements coupled with potentially distributing the machine functions more evenly across the right and left controllers.  相似文献   

9.
《Ergonomics》2012,55(1):126-128
Police officers spend large amounts of time performing duties within a police cruiser and report a high prevalence of musculoskeletal problems. This study evaluated the effects of driver seat and duty belt design on posture, pressure and discomfort. Ten male and 10 female university students attended two sessions involving simulated driving in a standard police seat (CV) and an active lumbar support (ALS) seat. Participants wore a full duty belt (FDB) or reduced duty belt (RDB) in each seat. Lumbar postures, driver-seat and driver-duty belt pressures and perceived discomfort were measured. Gender × Seat interactions were found for pelvic (p = 0.0001) and lumbar postures (p = 0.003). Females had more lumbar flexion than males and were more extended in the ALS seat (?9.8 ± 11.3°) than CV seat (?19.8 ± 9.6°). The FDB had greater seat pressure than the RDB (p < 0.0001), which corresponded to increased pelvis discomfort. This study supports the use of an ALS seat and RDB to reduce injury risk associated with prolonged sitting in police officers.

Practitioner Summary: Police officers report a high prevalence of musculoskeletal problems to the lower back, associated with prolonged driving and further investigation is needed to reduce injury risk. This simulated driving study investigated seat and duty belt configuration on biomechanical measures and discomfort. Seat design had the greatest impact, regardless of gender and males benefited more from a reduced belt configuration.  相似文献   

10.
《Ergonomics》2012,55(12):1601-1615
Abstract

Car and road designs are considered to be better when they require less driver attention and allow drivers to behave more as a supervisory controller in coping with normal, multi-task driving. In this paper an example is presented with respect to road design and, more specifically, with respect to various configurations of delineation on wet roads at night. The criteria for supervisory control are focused on drivers' observation strategy in terms of ‘free times’ available for tasks beyond lateral vehicle control, on drivers' control strategy in terms of amplitudes and frequencies of steering-wheel movements, and on the overall driving performance in terms of variations in lateral position and yaw rate.

The research findings on straight and curved roads recommend the necessity of using delineation devices at both sides of the traffic lane by the implementation of profiled stripes, raised pavement markers at the location of the centre and/or lane boundaries, or post-mounted delineators just beside the boundary. Post-mounted delineators on larger cross distances are less effective. The longitudinal spacing between the raised pavement markers has to be restricted up to 12 m for curves with radii for 200 m and up to 24 m for straight roads.  相似文献   

11.
《Ergonomics》2012,55(12):1529-1539
Conventional, straight keyboards remain the most popular design among keyboards sold and used with personal computers despite the biomechanical benefits offered by alternative keyboard designs. Some typists indicate that the daunting medical device-like appearance of these alternative ‘ergonomic’ keyboards is the reason for not purchasing an alternative keyboard design. The purpose of this research was to create a new computer keyboard that promoted more neutral postures in the wrist while maintaining the approachability and typing performance of a straight keyboard. The design process created a curved alphanumeric keyboard, designed to reduce ulnar deviation, and a built-in, padded wrist-rest to reduce wrist extension. Typing performance, wrist postures and perceptions of fatigue when using the new curved keyboard were compared to those when using a straight keyboard design. The curved keyboard reduced ulnar deviation by 2.2° ± 0.7 (p < 0.01). Relative to the straight keyboard without a built-in wrist-rest, the prototype curved keyboard with the built-in padded wrist-rest reduced wrist extension by 6.3° ± 1.2 (p < 0.01). There were no differences in typing speed or accuracy between keyboards. Perceived fatigue ratings were significantly lower in the hands, forearms and shoulders with the curved keyboard. The new curved keyboard achieved its design goal of reducing discomfort and promoting more neutral wrist postures while not compromising users' preferences and typing performance.  相似文献   

12.
The introduction of automated driving systems raised questions about how the human driver interacts with the automated system. Non-cooperative game theory is increasingly used for modelling and understanding such interaction, while its counterpart, cooperative game theory is rarely discussed for similar applications despite it may be potentially more suitable. This paper describes the modelling of a human driver’s steering interaction with an automated steering system using cooperative game theory. The distributed Model Predictive Control approach is adopted to derive the driver’s and the automated steering system’s strategies in a Pareto equilibrium sense, namely their cooperative Pareto steering strategies. Two separate numerical studies are carried out to study the influence of strategy parameters, and the influence of strategy types on the driver’s and the automated system’s steering performance. It is found that when a driver interacts with an automated steering system using a cooperative Pareto steering strategy, the driver can improve his/her performance in following a target path through increasing his/her effort in pursuing his/her own interest under the driver-automation cooperative control goal. It is also found that a driver’s adoption of cooperative Pareto steering strategy leads to a reinforcement in the driver’s steering angle control, compared to the driver’s adoption of non-cooperative Nash strategy. This in turn enables the vehicle to return from a lane-change maneuver to straight-line driving swifter.   相似文献   

13.
The purpose of this study was to develop an automated, RULA-based posture assessment system using a deep learning algorithm to estimate RULA scores, including scores for wrist posture, based on images of workplace postures. The proposed posture estimation system reported a mean absolute error (MAE) of 2.86 on the validation dataset obtained by randomly splitting 20% of the original training dataset before data augmentation. The results of the proposed system were compared with those of two experts’ manual evaluation by computing the intraclass correlation coefficient (ICC), which yielded index values greater than 0.75, thereby confirming good agreement between manual raters and the proposed system. This system will reduce the time required for postural evaluation while producing highly reliable RULA scores that are consistent with those generated by manual approach. Thus, we expect that this study will aid ergonomic experts in conducting RULA-based surveys of occupational postures in workplace conditions.  相似文献   

14.
Method for the analysis of posture and interface pressure of car drivers   总被引:8,自引:0,他引:8  
Biomechanical study of car driver posture is one of the most referenced aspects for the ergonomic design process of the whole vehicle. The aim of this work is to present a multi-factor method for the analysis of sitting posture and the resulting interactions of the car driver body with the cushion and the backrest. The proposed method, based on the combined use of an optoelectronic system for motion capture and suitable matrices of pressure sensors, has allowed the measurement of a large set of car driver posture parameters and the identification of specific sitting strategies characterising the driving posture, despite the different behaviours of the analysed subjects.  相似文献   

15.
《Ergonomics》2012,55(7):1261-1267
Work postures and movements of the upper limb were analysed for 12 ‘mouse’ operators and 12 ‘non-mouse’ computer operators employed in word-processing work. Measurements were carried out during correction of a given text. ‘Mouse’ operators spent 64% of the working time with the operative wrist deviating more than 15° towards the ulnar side, while ‘non-mouse’ operators spent 96% of the time with the corresponding wrist in neutral position towards radial deviation. The rotation in the shoulder was at all times in neutral position towards inward rotation for ‘non-mouse’ operators, while ‘mouse’ operators worked 81% of the time with the shoulder rotated outward more than 30°. ‘Mouse’ operators corrected a longer text during the given time. Our observations showed long periods of strenuous working postures for ‘mouse’ operators compared to ‘non-mouse’ operators. We believe that further investigations need to be carried out on the effects of word-processing techniques and to develop ergonomic work station designs for the ‘mouse’ and other non-keyboard input devices.  相似文献   

16.
The paper discusses a series of driving trials that were conducted to investigate postural stability of disabled drivers and to assess the effectiveness of a representative sample of support aids. Twenty-three disabled drivers with varying levels of physical disability and seven non disabled drivers participated in the study. The test car was equipped with transducers to measure vehicle velocity and acceleration (longitudinal and lateral), steering wheel movement and torque, and the bracing forces exerted by the driver on the steering wheel. Video cameras were installed to record postural support strategies and displacement of the driver and to record deviation of the car from the specified path. Subjective data regarding driver attitudes and acceptance were also collected through the administration of questionnaires. Findings from the study showed that support aids significantly improved driving performance and reduced physical exertion to maintain an upright driving position for disabled drivers. However, ergonomics design aspects regarding the ease of use and acceptance of the support aids by the end users were identified as obstacles to their sustained use in everyday driving.  相似文献   

17.
《Ergonomics》2012,55(3):358-365
Abstract

Nowadays touch technology is growing and developers try to make it ever more intuitive and easier to use. This present work focused on the upper limb joint coordination during the achievement of puzzles on touch screen. A 5-inch and 10-inch devices were used to perform 9 and 16 pieces puzzles dragged with digits. The conclusions showed an increase in joint solicitation with the number of piece and the touch screen size. Moreover, three interactions strategies proved to be an evidence: the ‘wrist strategy’ preferentially implying wrist flexion/extension, the ‘elbow strategy’ preferentially implying the elbow flexion/extension and the ‘neutral strategy’ mobilising equally the two joints. From an ergonomic point of view, the data about how the upper limb segments are mobilised while interacting with the screen could be relevant to increase the adaptability of the devices to the user, including users with motor impairments.

Practitioner Summary: Information about the biomechanical organisation of movement during interaction with touch devices appears relevant in order to develop applications adapted to the motor capacities of users. From the analysis of joint angles when performing several times a puzzle with healthy subjects, three motor strategies were highlighted.  相似文献   

18.
The Society of Automotive Engineers (SAE) J1517 and J941 models of a driver-selected seat position and a driver's eye location mainly rely on their statistical linear relationships with seat configuration and package variables. Although the SAE models are useful for vehicle interior design, their prediction performance was not provided. The present study was intended to develop accurate prediction models of a driver's hip location (HL) and eye location (EL) based on their statistical geometric relationships with anthropometric dimensions and driving postures. A driving simulation experiment was conducted with 40 Korean drivers (20 males and 20 females) in a seating buck reconfigurable to various package conditions. The anthropometric measurements, HLs, ELs, and joint angles of the participants were collected using an anthropometer, a motion capture system, and a digital human model simulation program. Two types (full model and simplified model) of statistical geometric models (SGMs) for HL and EL prediction were developed by multiple regression analysis of the anthropometric measurements and driving postures on the HLs and ELs. The average adjusted R2 and RMSE of the SGMs were .82 (± .06) and 25.7 (±3.3) mm, respectively. The SGMs showed accurate and stable prediction performance because the SGMs additionally incorporated the geometric relationships of HL and EL with anthropometric dimensions and joint angles. The SGMs would be useful to predict the HLs and ELs of drivers with various body sizes and joint angles in occupant packaging.  相似文献   

19.
《Ergonomics》2012,55(1):131-137
Driver posture is an important factor to be considered in the ergonomics design process of automobiles. Most decisions during automobile design and manufacture are informed by studying the intricate biomechanical components of human musculoskeletal systems to ensure maximum comfort, safety and well-being during driving. A case study is presented that confirms inappropriate foot position as a causative factor for the development of abnormal lateral/plantar heel callosities when driving a 4 × 4-style vehicle. The driver's foot position was influenced by the seat geometry of the vehicle. Cessation of driving the 4 × 4-style vehicle and driving of an alternative automobile while on holiday for a period of 4 weeks resolved the condition. On return to the 4 × 4-style vehicle, however, the abnormal callus patterns redeveloped while using the same footwear and no change in any other parameters. It is therefore suggested that seat and consequent foot position is an important ergonomic factor that should be addressed in the future design of automobile seating.  相似文献   

20.
Outdoor tasks operated by construction workers are physically demanding, requiring awkward postures leading to pain, injury, accident, or permanent disability. Ergonomic posture recognition (EPR) technique could be a novel solution for ergonomic hazard monitoring and assessment, yet non-intrusiveness and applicability in complex outdoor environment are always critical considerations for device selection in construction site. Thus, we choose RGB camera to capture skeleton motions, which is non-intrusive for workers compared with wearable sensors. It is also stable and widely used in an outdoor construction site considering various light conditions and complex working areas. This study aims to develop an ergonomic posture recognition technique based on 2D ordinary camera for construction hazard prevention through view-invariant features in 2D skeleton motion. Based on captured 2D skeleton motion samples in the test-run, view-invariant features as classifier inputs were extracted to ensure the learned classifier not sensitive to various camera viewpoints and distances to a worker. Three posture classifiers regarding human back, arms, and legs were employed to ensure three postures to be recognized simultaneously in one video frame. The average accuracies of three classifiers in 5-fold cross validation were as high as 95.0%, 96.5%, and 97.6%, respectively, and the overall accuracies tested by three new activities regarding ergonomic assessment scores captured from different camera heights and viewpoints were 89.2%, 88.3%, and 87.6%, respectively. The developed EPR-aided construction accident auto-prevention technique demonstrated robust accuracy to support on-site postural ergonomic assessment for construction workers’ safety and health assurance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号