首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
带扰流片的矩形直通道内的流动与换热   总被引:1,自引:0,他引:1       下载免费PDF全文
建立了矩形直通道内三维可压缩流动与换热模型 ,对来流雷诺数Re在 1× 10 5~ 3× 10 5范围内 ,带顺排和错排扰流片的通道内部对流换热过程进行了模拟计算。计算结果表明 ,矩形扰流片具有明显的强化冷却效果 ,扰流片表面的对流换热系数明显高于光滑表面的值 ,有扰流片区域的壁面温度明显降低 ;错排扰流片与顺排扰流片相比 ,对流换热系数增大 4 %左右。计算结果归纳了传热和流动压降关系式。  相似文献   

2.
采用数值模拟的方法,对在旋转情况下的有弦向出流的梯形扰流柱通道内的三维流场进行了模拟研究。重点研究了在固定出流比的情况下,不同转速对扰流柱通道内的流动情况及端壁平均换热系数的影响。计算结果表明:R_o不为0时,通道内的流场与静止时相比有较大变化,在扰流柱区域内的扰动强度明显增大,流动更加紊乱,在扰流柱区域和无柱区域内均有涡旋现象发生;当Re数一定时,通道的压降和端壁的平均换热系数随着旋转数R_o的增大而增加;旋转对扰流柱通道的压降和端壁换热系数有明显影响,旋转对扰流柱通道流动及换热的影响随通道数Re数的增大而增强。  相似文献   

3.
在现代高性能燃气涡轮发动机中,随着涡轮前燃气温度的不断提高,旋转涡轮叶片的冷却问题日益受到重视。在众多的冷却技术中,内部冷却具有明显的优势和较强的应用前景。综述了近年来旋转状态下燃气涡轮叶片内部冷却技术的研究成果,总结了光滑壁面旋转对流场和传热的影响、旋转对冲击冷却影响以及旋转扰流式肋片冷却介质通道传热的研究现状,阐述了旋转状态下内部冷却和气膜冷却相互影响的研究情况。最后指出进一步优化内流通道结构,研究旋转对扰流柱通道流动及换热的影响以及在旋转状态下深入探讨内部流动与外部气膜冷却相互影响的机理是今后工作的重点。  相似文献   

4.
5.
利用数值模拟方法分析了矩形仿螺旋肋片内冷通道中肋片导流角度对内冷通道三维流场特性、换热特性以及流动阻力特性的影响。数值计算结果表明,肋片导流角度对内冷通道的流动与换热特性具有较大的影响。流场中冷却介质螺旋流动的强度随着肋片导流角增大而增强,肋片导流角度越大则内冷通道的换热强度越强,同时通道中流动阻力也明显增大。从内冷通道的综合换热效果来看,当肋片导流角度为7。时,矩形仿螺旋肋片内冷通道的综合换热效果最好。  相似文献   

6.
本文采用SST(剪切应力模型)湍流模型模拟研究了旋转带肋U形通道中的汽雾/空气流动与换热特性,分析了汽雾的初始直径和温度对汽雾/空气冷却性能的影响规律。结果表明:雾滴在旋转通道第一流程向尾缘面偏转,在第二流程向前缘面偏转;雾滴初始直径越小,到达加热段某截面的直径越小,使换热效果越好,同时,汽雾浓度也越小,使换热效果越差,存在一个最佳的汽雾初始直径,使综合的换热效果最好;汽雾初始温度越低,汽雾流动距离越大,换热效果越好。  相似文献   

7.
利用有限体积法对三维不可压缩的N-S方程进行离散,对上下表面带有错排间断性楔形肋片且对置的仿螺旋内冷通道进行了数值模拟。网格划分采用非结构化混合网格,湍流模型为kε-两方程模型,在近壁面处采用标准壁面函数法进行处理,速度和压力的耦合采用S IM PLE算法。计算获得了楔形仿螺旋肋片内冷通道在楔形肋片与主流方向夹角分别为0°、15°、30°时的三维流场分布。结果表明楔形仿螺旋肋片内冷通道的流场结构比较复杂,通道内流体流动达到了预期的仿螺旋流动效果。通道的平均努谢尔数随楔形肋片与主流夹角的增大而呈增大趋势,通道换热强度得到了明显的提高,但同时流动阻力也显著增加。  相似文献   

8.
基于垂直环管内旋流对流动边界层的扰动机理,采用数值模拟的方法研究了叶片角度、雷诺数以及进口水温对管内换热以及流动特性的影响,揭示了重力对环管内旋流流动的内在影响机制。结果表明:与水平环管相比,垂直环管的综合换热性能变化平缓,主要受到重力对压降的影响;与雷诺数相比,叶片角度对流场以及温度场的影响最显著;在雷诺数小于15 000,叶片角度为30°时管内的换热性能最佳。  相似文献   

9.
应用-两方程模型对分离结构扰流柱的叶片内冷通道的换热与流动进行了三维数值模拟研究,扰流柱的布置按简单叉排方式。计算结果表明:在本文的参数范围内,与完整扰流柱相比,分离结构扰流柱的换热效果略有增强,而阻力系数随之增大,分离位置居中的扰流柱通道的换热效果最好。随着开缝厚度的增加,通道表面换热效果和流动阻力系数均先略有增大而后逐渐减小。  相似文献   

10.
殷亮 《热科学与技术》2007,6(3):219-223
对具有内热源方腔的稳态层流耦合自然对流换热进行了三维的数值模拟,采用的模拟代码基于连续介质计算力学的开源库OpenFoam,解决了自然对流换热与固体传热的耦合问题。对外壁面为常温、方腔内充满含体积热源流体的自然对流计算结果表明,温度场、速度场与非耦合的工况有很大差异。Ra的变化从10^5到10^9。  相似文献   

11.
In this paper vorticity covariance in MHD turbulent flow of dusty fluid in the presence of coriolis force have been obtained. The obtained result shows that the defining scalars α(s, t), β(s, t) and γ(s, t) of the vorticity covariance depend on the defining scalars of the tensors Wij, Pik,j, Fkj,i, Dik,j, Hkj,i, Tij and Rij already defined in the text. © 1997 by John Wiley & Sons, Ltd.  相似文献   

12.
13.
This work performed a detailed measurement of local heat transfer coefficients in a square channel with a perforation baffle by using the transient liquid crystal themography. The varied parameters were the Reynolds number, the baffle height, and the hole numbers on the perforation baffle. The results showed that the enhancements of local heat transfer appeared in the leading edge of the baffle due to the impinging effect, which was more significant when Reynolds number became larger or the baffle height became higher. Additionally, the heat transfer coefficients off center were better than those in the center at downstream of the baffle. It might be resulted from two secondary flows, which appeared off center after the airflow passed through the baffle. Baffles with various hole numbers but having same total hole area were also studied to find the heat transfer enhancement. The results depicted that the back facing step flow which had characteristics of backflow and flow reattachment had an important effect on the heat transfer characteristics at downstream of the baffle. Finally, the correlation for the location of the flow reattachment point (Xr) was proposed.  相似文献   

14.
The article presents a numerical investigation on laminar flow and heat transfer characteristics in a three-dimensional isothermal wall square-channel fitted with inline 45° V-shaped baffles on two opposite walls. The computations based on the finite volume method with the SIMPLE algorithm have been conducted for the airflow in terms of Reynolds numbers ranging from 200 to 2000. The inline V-baffles with its V-tip pointing downstream and the attack angle (or half V-apex angle) of 45° relative to the flow direction are mounted repeatedly on the lower and upper walls. The baffled channel flow shows a fully developed periodic flow and heat transfer profile for BR = 0.2 at x/D≈ 8 downstream of the inlet. Influences of different baffle height ratios (BR) and pitch ratios, (PR) on thermal behaviors for a fully developed periodic condition are investigated. It is apparent that the longitudinal counter-rotating vortex flows created by the V-baffle can induce impingement/attachment flows over the walls resulting in greater increase in heat transfer over the test channel. Apart from speeding up the fully developed periodic flow pattern, the rise of the BR leads to the increase in Nu/Nu0 and f/f0 values while that of the PR provides an opposite trend. The V-baffle performs better than the angled baffle at a similar condition. The V-baffle with BR = 0.2 and PR = 1.5 yields the maximum thermal performance of about 3.8 whereas the Nu/Nu0 is some 14 times above the smooth channel at higher Re.  相似文献   

15.
A numerical investigation was conducted to analyze the unsteady flow field and heat transfer characteristics in a horizontal channel with a built-in heated square cylinder. Hydrodynamic behavior and heat transfer results are obtained by the solution of the complete Navier–Stokes and energy equations using a control volume finite element method (CVFEM) adapted to the staggered grid. The Computation was made for two channel blockage ratios (β=1/4 and 1/8), different Reynolds and Richardson numbers ranging from 62 to 200 and from 0 to 0.1 respectively at Pr=0.71. The flow is found to be unstable when the Richardson number crosses the critical value of 0.13. The results are presented to show the effects of the blockage ratio, the Reynolds and the Richardson numbers on the flow pattern and the heat transfer from the square cylinder. Heat transfer correlation are obtained through forced and mixed convection.  相似文献   

16.
The internal cooling passage of a gas turbine blade equipped with ribs is modeled as a rotating ribbed channel. The flow and heat transfer in the ribbed channel have been investigated by conducting large eddy simulations with a dynamic subgrid-scale model. The Reynolds number considered is 30,000 and rotation numbers are 0, 0.1 and 0.3. The time-averaged results show good agreement with the experimental data. By comparing the present data with those of the smooth channel, it is observed that the vortices shed from the rib induce strong wall-normal motions, and they are augmented on the trailing-wall side by the rotation, resulting in a significant increase in the heat transfer due to rotation. It is also shown that the similarity between the streamwise velocity and temperature is significantly destroyed by both the rotation and the rib itself.  相似文献   

17.
An unsteady flow and heat transfer of a viscous incompressible electrically conducting fluid over a rotating infinite disk in an otherwise ambient fluid are studied. The unsteadiness in the flow field is caused by the angular velocity of the disk which varies with time. The magnetic field is applied normal to the disk surface. The new self-similar solution of the Navier–Stokes and energy equations is obtained numerically. The solution obtained here is not only the solution of the Navier–Stokes equations, but also of the boundary layer equations. Also, for a simple scaling factor, it represents the solution of the flow and heat transfer in the forward stagnation-point region of a rotating sphere or over a rotating cone. The asymptotic behaviour of the solution for a large magnetic field or for a large independent variable is also examined. The surface shear stresses in the radial and tangential directions and the surface heat transfer increase as the acceleration parameter increases. Also the surface shear stress in the radial direction and the surface heat transfer decrease with increasing magnetic field, but the surface shear stress in the tangential direction increases.  相似文献   

18.
Convective heat transfer in a differentially heated square enclosure with an inner rotating cylinder is studied theoretically. The free space between the cylinder and the enclosure walls is filled with water–Ag, water–Cu, water–Al2O3 or water–TiO2 nanofluids. The governing equations are formulated for velocity, pressure and temperature formulation and are modeled in COMSOL, a partial differential equation (PDE) solver based on the Galerkin finite element method (GFEM). The governing parameters considered are the solid volume fraction, 0.0 ? ? ? 0.05, the cylinder radius, 0 ? R ? 0.3 and the angular rotational velocity, ?1000 ? Ω ? 1000. The results are presented to show the effect of these parameters on the heat transfer and fluid flow characteristics. It is found that the strength of the flow circulation is much stronger for a higher nanoparticle concentration, a better thermal conductivity value and a smaller cylinder with a faster, negative rotation. The maximum heat transfer are obtained at a high nanoparticle concentration with a good conductivity value, a slow positive rotation and a moderate cylinder size located in the center of the enclosure.  相似文献   

19.
Direct numerical simulation of wall-normal rotating channel flow with heat transfer has been performed for the rotation number Nτ from 0 to 0.1, the Reynolds number 194 based on the friction velocity of non-rotating case and the half-height of the channel, and the Prandtl number 1. The objective of this study is to reveal the effects of rotation on the characteristics of turbulence and heat transfer. Some statistical turbulence and heat transfer quantities, including the mean velocity, temperature and their fluctuations, turbulent heat fluxes, and turbulence structures, are investigated. Based on the present calculated results, two typical rotation regimes are identified. When 0 < Nτ < 0.06, the turbulence statistics correlated with the spanwise velocity fluctuation are enhanced since the shear rate of spanwise mean flow induced by Coriolis force increases; however, the other statistics are suppressed. When Nτ > 0.06, all the turbulence statistics are suppressed significantly. To elucidate the effects of rotation on the turbulent heat transfer, the budget terms in the transport equation of turbulent heat fluxes are analyzed. Remarkable change of the direction of near-wall streak structures of the velocity and temperature fluctuations, nearly in alignment with the absolute mean flow direction, is revealed. An attempt to evaluate the mean spacing and the direction of streaky structures near the wall has been examined based on the two-point correlations of the velocity and temperature fluctuations.  相似文献   

20.
This paper deals with the steady flow and heat transfer of a viscous incompressible power-law fluid over a rotating infinite disk. Assumed the thermal conductivity follows the same function as the viscosity, the governing equations in the boundary layer are transformed into a set of ordinary differential equations by generalized Karman similarity transformation. The corresponding nonlinear two-point boundary value problem was solved by multi-shooting method. Numerical results indicated that the parameters of power-law index and Prandtl number have significant effects on velocity and temperature fields. The thickness of the boundary layer decays with power-law index. The peak of the radial velocity changes slightly with power- law index. The values near the boundary are affected dramatically by the thickness of the boundary layer. With the increasing of the Prandtl number the heat conducts more strongly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号