共查询到20条相似文献,搜索用时 13 毫秒
1.
水泥固化重金属污染土干湿循环特性试验研究 总被引:7,自引:0,他引:7
水泥固化/稳定法是修复污染土地基的常用方法,修复后的固化土在外界环境干湿循环作用下的稳定性如何是事关修复成败的关键所在。通过系统的室内试验,着重研究了水泥固化Pb2+、Zn2+污染土在干湿循环作用下的强度特性、淋滤特性以及微结构变化规律,揭示了水泥固化重金属污染土的微观作用机制。试验结果表明,固化土体的强度及淋滤特性随着水泥掺量的增加得到了显著改善。固化重金属污染土的无侧限抗压强度随干湿循环次数的增加先增大,达到峰值后,随干湿循环次数的继续增大而减小。污染物掺量较低时,重金属离子的滤出浓度在干湿循环作用初期略有降低,此后则有所增加,但变化幅度较小;高污染物掺量时,滤出液中的重金属离子浓度较高,且随着干湿循环次数的增加而不断增大。低污染物掺量下,水泥对Pb2+及Zn2+固化效果相差不大;高污染物掺量下,水泥对Zn2+的固化效果较好。经过干湿循环作用后的固化土的扫描电镜试验结果与与其宏观力学及淋滤特性指标变化规律一致,从微观角度揭示了固化土工程性质的变化机制。 相似文献
2.
近十年来 ,土工离心机被作为模拟污染物扩散的一个重要手段。但是 ,目前能否采用离心机进行非饱和土中的水分迁移研究尚有争议 ;另外在无机可溶性污染物方面的研究也仅限于对惰性的、土壤吸附能力很低的无机物 (如钠离子 )在土体中的扩散机理研究。本文选用能够与土颗粒发生较强作用的重金属镉 ,利用土工离心机进行了非饱和土中一维模型的模拟研究 ,分析了非饱和土中含水率的变化和污染物的迁移机理 ,检验采用离心模拟方法研究污染物扩散机理的可行性 ,验证与污染物扩散机理相关的模型相似律。 相似文献
3.
This paper presents the results of an experimental investigation into the mechanical behaviour of an expansive soil during wetting and drying cycles. The experimental tests were conducted in a modified oedometer under two different surcharge pressures (10 and 20 kPa). During the tests, the samples were inundated with different types of wetting fluids (distilled water, saline water and acidic water). The volumetric deformation, void ratio and water content of the samples were determined during cycles of wetting and drying. The results show that the swelling potential increases with an increasing number of wetting and drying cycles. The effect of the distilled water on the swelling potential is not the same as that of the saline water or the acidic water, particularly for different surcharge pressures. The variations in void ratio and water content show that, at the equilibrium condition, the wetting and drying paths converge to nearly an S-shaped curve. This curve consists of a linear portion and two curved portions, and the majority of the deformation is located between the saturation curves of 90% and 40%. 相似文献
4.
《岩石力学与岩土工程学报(英文版)》2023,15(1):269-284
Variability in moisture content is a common condition in natural soils. It influences soil properties significantly. A comprehensive understanding of the evolution of soil microstructure in wetting/drying process is of great significance for interpretation of soil macro hydro-mechanical behavior. In this review paper, methods that are commonly used to study soil microstructure are summarized. Among them are scanning electron microscope (SEM), environmental SEM (ESEM), mercury intrusion porosimetry (MIP) and computed tomography (CT) technology. Moreover, progress in research on the soil microstructure evolution during drying, wetting and wetting/drying cycles is summarized based on reviews of a large body of research papers published in the past several decades. Soils compacted on the wet side of optimum water content generally have a matrix-type structure with a monomodal pore size distribution (PSD), whereas soils compacted on the dry side of optimum water content display an aggregate structure that exhibits bimodal PSD. During drying, decrease in soil volume is mainly caused by the shrinkage of inter-aggregate pores. During wetting, both the intra- and inter-aggregate pores increase gradually in number and sizes. Changes in the characteristics of the soil pore structure significantly depend on stress state as the soil is subjected to wetting. During wetting/drying cycles, soil structural change is not completely reversible, and the generated cumulative swelling/shrinkage deformation mainly derives from macro-pores. Furthermore, based on this analysis and identified research needs, some important areas of research focus are proposed for future work. These areas include innovative methods of sample preparation, new observation techniques, fast quantitative analysis of soil structure, integration of microstructural parameters into macro-mechanical models, and soil microstructure evolution characteristics under multi-field coupled conditions. 相似文献
5.
The importance of applying unsaturated soil mechanics to geotechnical engineering design has been well understood. However, the consumption of time and the necessity for a specific laboratory testing apparatus when measuring unsaturated soil properties have limited the application of unsaturated soil mechanics theories in practice. Although methods for predicting unsaturated soil properties have been developed, the verification of these methods for a wide range of soil types is required in order to increase the confidence of practicing engineers in using these methods. In this study, a new permeameter was developed to measure the hydraulic conductivity of unsaturated soils using the steady-state method and directly measured suction (negative pore-water pressure) values. The apparatus is instrumented with two tensiometers for the direct measurement of suction during the tests. The apparatus can be used to obtain the hydraulic conductivity function of sandy soil over a low suction range (0–10 kPa). Firstly, the repeatability of the unsaturated hydraulic conductivity measurement, using the new permeameter, was verified by conducting tests on two identical sandy soil specimens and obtaining similar results. The hydraulic conductivity functions of the two sandy soils were then measured during the drying and wetting processes of the soils. A significant hysteresis was observed when the hydraulic conductivity was plotted against the suction. However, the hysteresis effects were not apparent when the conductivity was plotted against the volumetric water content. Furthermore, the measured unsaturated hydraulic conductivity functions were compared with predictions using three different predictive methods that are widely incorporated into numerical software. The results suggest that these predictive methods are capable of capturing the measured behavior with reasonable agreement. 相似文献
6.
Duquène L Tack F Meers E Baeten J Wannijn J Vandenhove H 《The Science of the total environment》2008,391(1):26-33
Chelate-assisted phytoextraction has been proposed as a potential tool for phytoremediation of U contaminated sites. In this context, the effects of five biodegradable amendments on U release in contaminated soils were evaluated. Three soils were involved in this study, one with a relatively high background level of U, and two which were contaminated with U from industrial effluents. Soils were treated with 5 mmol kg(-1) dry weight of either citric acid, NH(4)-citrate/citric acid, oxalic acid, S,S-ethylenediamine disuccinic acid or nitrilotriacetic acid. Soil solution concentration of U was monitored during 2 weeks. All amendments increased U concentration in soil solution, but citric acid and NH(4)-citrate/citric acid mixture were most effective, with up to 479-fold increase. For oxalic acid, S,S-ethylenediamine disuccinic acid and nitrilotriacetic acid, the increase ranged from 10-to 100-fold. The highest concentrations were observed 1 to 7 days after treatment, after which U levels in soil solution gradually decreased. All amendments induced a temporary increase of soil solution pH and TOC that could not be correlated with the release of U in the soil solution. Thermodynamic stability constants (log K) of complexes did not predict the relative efficiency of the selected biodegradable amendments on U release in soil solution. Amendments efficiency was better predicted by the relative affinity of the chelate for Fe compared to U. 相似文献
7.
针对干湿循环作用下岩石劣化机理的复杂性,以砂岩为研究对象,通过对砂岩浸泡溶液离子浓度的测试,定量反分析砂岩矿物的溶解,得到砂岩孔隙度的演化规律,分析干湿循环作用下砂岩的劣化机制。结果表明:浸泡溶液中Ca~(2+)的生成速率比K~+、Na~+、SiO_2高一个数量级,Fe~(2+)的生成速率最低。每阶段循环后,方解石的体积减少量最多,其次是钾长石和钠长石,黑云母和石英的体积减少量最小。干湿循环作用后,微小的孔隙度变化,会导致抗压强度的大幅度降低,各阶段孔隙度变化值与劣化度成正相关。干湿循环侵蚀后,砂岩各种矿物的溶解流失,使得自身胶结物量减少,孔隙度增大,产生各种空洞与微裂缝,最终反映为强度的降低,是为干湿循环导致砂岩劣化的重要原因。 相似文献
8.
In this study, the impact of cyclic wetting and drying on swelling behavior of lime-stabilized clayey soils has been investigated. Swelling potential and swelling pressure tests have been carried out on soil mixtures with various amounts of kaolinite–bentonite clays, and on a high plasticity clayey soil sample. The tests have been repeated after the addition of lime to the lime-treated samples in different preparation. In each cycle the tested samples were allowed air dry to their initial water content thus shrinking to their initial height, which is called ‘partial shrinkage’ method. The results showed that the initial beneficiary effect of lime stabilization was lost after the first cycle and the swelling potential increased at the subsequent cycles. On the other hand, the swelling potential and the swelling pressure of the untreated soil samples started decreasing after the first cycle and they reached equilibrium after the fourth cycle. 相似文献
9.
10.
In this work, the effect of hysteresis phenomenon on the consolidation behavior of an unsaturated silty soil was investigated through a program of experimental tests. Compacted samples were prepared by the slurry method and experimental tests were carried out in a double-walled triaxial cell. Consolidation tests were conducted by the ramping method at suctions of 0, 100, 200, 250 and 300 kPa on drying and wetting paths of the soil water characteristic curve. The results show that the paths of specific water volume and specific volume are not consistent during stabilization in either condition (drying or wetting). In addition, the yield stress for the wetting path is higher than that for drying. The trend of variations of the specific water volume during loading is similar to the consolidation curves for different suction. For both conditions of drying and wetting, the slope and intercept of the virgin line due to variations of specific volume and specific water volume are a function of suction. While their values decrease with increasing suction, these values are higher for the dry path than wetting. 相似文献
11.
污染土壤的物理化学修复现状与展望 总被引:1,自引:0,他引:1
介绍了我国土壤污染的突出特点及其危害,在分析污染土壤原位修复和异位修复两种方式不同特点的基础上,根据各种修复技术的不同作用原理,介绍了目前国内外主要物理、化学修复的技术原理、适用性、局限性及实施时间等,展望了今后物理化学修复技术的发展。 相似文献
12.
Godecke-Tobias Blecken Yaron Zinger Ana Deleti Tim D. Fletcher Maria Viklander 《Water research》2009,43(18):4590-4598
Biofiltration is a technology to treat urban stormwater runoff, which conveys pollutants, including heavy metals. However, the variability of metals removal performance in biofiltration systems is as yet unknown. A laboratory study has been conducted with vegetated biofilter mesocosms, partly fitted with a submerged zone at the bottom of the filter combined with a carbon source. The biofilters were dosed with stormwater according to three different dry/wet schemes, to investigate the effect of intermittent wetting and drying conditions on metal removal.Provided that the biofilters received regular stormwater input, metal removal exceeded 95%. The highest metal accumulation occurs in the top layer of the filter media. However, after antecedent drying before a storm event exceeding 3–4 weeks the filters performed significantly worse, although metal removal still remained relatively high. Introducing a submerged zone into the filter improved the performance significantly after extended dry periods. In particular, copper removal in filters equipped with a submerged zone was increased by around 12% (α = 0.05) both during wet and dry periods and for lead the negative effect of drying could completely be eliminated, with consistently low outflow concentrations even after long drying periods. 相似文献
13.
基于实际工程建立了地源热泵空调系统运行过程的岩土体原位观测站,实现系统运行状况和换热过程中岩土体温度变化、水分迁移的实时监测,通过冬季工况运行试验,揭示地源热泵运行过程中土体的热湿迁移效应。研究结果表明:冬季工况下该地源热泵空调系统的机组性能系数COP为3.58,具有良好的制热效果;土壤温度场的变化受地埋管热交换和大气环境变化两个因素的影响,但二者的影响范围及程度有所区别;土壤温度场的变化幅度随着与地埋管距离的增加而递减,竖埋管热作用的影响半径约2.0 m左右,水平埋管热作用的影响半径约1.0 m左右;地埋管热交换对土壤湿度场的影响不显著,但大气降雨引起的地表水入渗和地下水位的变迁对土壤湿度场变化有明显影响。 相似文献
14.
15.
基质吸力和净平均应力的增大均可引起土体的压缩变形。针对砂土、粉土、黏土和软土4种不同类型土体,结合试样收缩曲线和土水特征曲线分析了土体干燥过程中基质吸力和孔隙比的关系。试验结果表明:土体干燥收缩过程中随着基质吸力的增大试样不断发生收缩,当基质吸力增大到某特定值时,基质吸力的增大对试样收缩变形无明显影响,称此基质吸力为缩限吸力。屈服吸力s0和缩限吸力ss将试样收缩过程分为弹性阶段、弹塑性阶段和缩限阶段3个阶段。并且不同类型土体的缩限吸力不相同,缩限吸力值与土体的塑性指数密切相关。在干燥收缩过程中,当试样的饱和度减小到90%时试样完成了绝大部分收缩,当试验饱和度达到70%时土样的孔隙比基本保持不变。 相似文献
16.
17.
干湿循环作用下击实膨胀土胀缩变形模拟 总被引:1,自引:0,他引:1
击实膨胀土在干湿循环作用下产生的胀缩体变可以分解为一个随含水率或吸力改变而同步变化的可逆性分量和一个主要产生于干湿循环过程初期的不可逆性分量。可逆性干湿体变来源于组成土骨架的黏土微观结构变形的可逆性,主要由当前吸力或含水率的变化确定。不可逆性干湿体变分量与干湿循环引起的土的宏观结构的不可逆变化有关,其大小依赖于当前状态与平衡状态的宏观结构的差异。分别给出了可逆性和不可逆性干湿体变分量的数学描述,结合低塑性非饱和土的BBM模型,提出了一个适用于击实膨胀土的实用本构模型。该模型的参数数量少且易于确定。通过对试验结果的模拟,表明本模型比经典的膨胀土BExM模型的模拟效果更好,更易于实用。 相似文献
18.
19.
首先对干粉灭火剂的吸湿机理作了进一步探讨 ,并推导出吸湿率与环境相对湿度之间的数学表达式。其次是讨论了干粉灭火剂的干燥曲线 ,发现磷酸铵盐干粉灭火剂和碳酸氢钠干粉灭火剂的干燥曲线形状相似 ,且干燥曲线不同于一般 ,干燥后期总有一段干燥速率上升段 ,并从水分与物料的结合状态上给以解释 ,说明其由来。 相似文献
20.
Phosphate minerals and specifically apatite show promise for environmental cleanup because they can form stable compounds with a wide range of cationic contaminants. However, phosphate minerals naturally accumulate some heavy metals that may cause additional contamination of the environment if used improperly. Nine commercially available phosphate materials were evaluated for remediation of contaminated soil based on solubility, concentration of metal/metalloid impurities, and leachability of impurity metal/metalloids. The phosphate materials consisted of three groups: processed (i.e., fertilizers), mined (rock phosphates from different formations), and biogenic (ground fish bone). Processed and mined rock phosphates contained relatively high total concentrations of As, Co, Cr, and Cu but did not exceed the RCRA toxicity characteristic leaching procedure (TCLP) limits. Biogenic apatite contained much lower metal concentrations than processed and mined rock phosphate and was appreciably more soluble. By combining biogenic and mined phosphate it is possible to obtain a wide range of phosphate release rates, permitting rapid immobilization of contaminants while providing a slow release of phosphate for continued long-term treatment. 相似文献