首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the reduction of the pump size, better hydraulic and cavitation performances. However, with two rotors rotating reversely, the significant interaction between blade rows was observed in our prototype contra-rotating rotors, which highly affected the pump performance compared with the conventional axial flow pumps. Consequently, a new type of rear rotor was designed by the rotational speed optimization methodology with some additional considerations, aiming at better cavitation performance, the reduction of blade rows interaction and the secondary flow suppression. The new rear rotor showed a satisfactory performance at the design flow rate but an unfavorable positive slope of the head-flow rate curve in the partial flow rate range less than 40% of the design flow rate, which should be avoided for the reliability of pump-pipe systems. In the present research, to understand the internal flow field of new rear rotor and its relation to the performances at the partial flow rates, the velocity distributions at the inlets and outlets of the rotors are firstly investigated. Then, the boundary layer flows on rotor surfaces, which clearly reflect the secondary flow inside the rotors, are analyzed through the limiting streamline observations using the multi-color oil-film method. Finally, the unsteady numerical simulations are carried out to understand the complicated internal flow structures in the rotors.  相似文献   

2.
Small-sized axial fans are used as air cooler for electric equipments.But there is a strong demand for higher power of fans according to the increase of quantity of heat from electric devices.Therefore,higher rotational speed design is conducted,although,it causes the deterioration of efficiency and the increase of noise.Then,the adoption of contra-rotating rotors for the small-sized axial fan is proposed for the improvement of performance.In the case of contra-rotating rotors,it is necessary to design the rotor considering the unsteady flow condition of each front and rear rotor.In the present paper,the fan performance of the contra-rotating small-sized axial fan with 100mm diameter at a designed and a partial flow rates is shown,and the unsteady flow conditions at the inlet and the outlet of each front and rear rotor are clarified with unsteady numerical results.Furthermore,the relation between the performance and the unsteady flow condition of the contra-rotating small-sized axial fan is discussed and the methods to improve the performance are considered.  相似文献   

3.
An application of contra-rotating rotors has been proposed against a demand for developing higher specific speed axial flow pump. The blade rows interaction between front and rear rotors should be clarified for its stable operation and reduction of unsteady losses. In this paper, the static pressure distributions on casing wall are provided by measuring with the phase locked sampling method. The measurements are carried out for two types of the rear rotors with different blade number and chord length, and it is found that, for both types of rotors, the unsteady pressure fluctuations are more remarkable in the front rotor than in the rear rotor and they are caused by the rear rotor pressure field. The effects of pressure fluctuations will be discussed in more details toward understanding the blade rows interaction in the contra-rotating axial flow pump.  相似文献   

4.
Small-sized axial fans are used as air coolers for electric equipments. But there is a strong demand for higher power of fans according to the increase of quantity of heat from electric devices. Therefore, higher rotational speed design is conducted, although it causes the deterioration of the efficiency and the increase of noise. Then the adoption of contra-rotating rotors for the small-sized axial fan is proposed for the improvement of the performance. In the present paper, the performance and the internal flow condition of the small-sized axial fan are shown as a first step of the research for the contra-rotating small-sized axial fan and the important points to apply contra-rotating rotors to the small-sized axial fan are discussed. Furthermore, the numerical flow analysis is conducted to investigate the performance of the contra-rotating small-sized axial fan and internal flow conditions and pressure distributions are clarified and the effect of contra-rotating rotors is considered.  相似文献   

5.
A sirocco fan using contra-rotating rotors in which an inner rotor is settled inside the sirocco fan rotor and each rotor rotates in an opposite direction was proposed for the purpose of getting the higher pressure and making the structure of a sirocco fan more compact. If the high discharge pressure is obtained with the adoption of the contra-rotating rotors, it could be used for various purposes. Pressure coefficient of a sirocco fan with contra-rotating rotors is 2.5 times as high as the conventional sirocco fan and the maximum efficiency point of contra-rotating rotors shifts to larger flow rate than a conventional sirocco fan. On the other hand, it was clarified from the flow measurement results that circumferential velocity component at the outlet of the outer rotor of contra-rotating ro- tors becomes larger than a conventional one. In the present paper, the performance of a conventional sirocco fan and a sirocco fan with contra-rotating rotors are shown and the internal flow field at the outlet of outer rotor of both cases is clarified. Then, the effect of different kind of contra-rotating rotors on the performance and internal flow field is investigated and the rotor design with higher performance would be discussed.  相似文献   

6.
Influences of tip clearance on the tip flow and associated loss mechanism in a contra-rotating axial flow fan has been studied in the paper, based on three dimensional numerical results. The results with different tip clearance are compared in terms of stage efficiency, relative total pressure loss coefficient, flow angle. It is found that the efficiency of the contra-rotating fan changes almost linearly with increment of the tip clearance, however, efficiency of the rear rotor is observed to decrease more dramatically than that of the forward rotor given same tip clearance variation. The analysis on the flow structure indicates that the tip region flow field is qualitatively similar in both rotors. However, with the same clearance value, the leakage flow in the rear rotor is effected by a tip leakage vortex of greater intensity caused by relative loading levels and the inter rotor interaction.  相似文献   

7.
The authors had invented the unique wind power unit composed of the large-sized front wind rotor, the small-sized rear wind rotor and the peculiar generator with the inner and the outer rotational armatures without the conventional stator. This unit is called "Intelligent Wind Power Unit" by the authors. The front and the rear wind rotors drive the inner and the outer armatures, respectively, while the rotational torque is counter-balanced between both armatures/wind rotors. This paper discusses experimentally the acoustic noise from the front and the rear wind rotors. The acoustic noise, in the counter-rotating operation, is induced mainly from the flow interaction between both rotors, and has the dominant power spectrum density at the frequency of the blade passing interaction. The noise is caused mainly from the turbulent fluctuation due to the flow separation on the blade, when the rear wind rotor stops or rotates in the same direction as the front wind rotor.  相似文献   

8.
针对汽轮机低压末级在小负荷工况下出现的流动不稳定现象,进行了非定常数值模拟研究和分析。对末三级叶片耦合排气缸进行建模,其中末级采用整圈形式,对17%设计质量流量工况进行非定常计算,小流量工况下汽轮机末级表现出类似于压气机旋转失速的现象,对流场监控数据进行周向模态分解及相关分析,确定了扰动的数目为30个,其周向传播速度约为转子转速的56%。最后,结合内部流动特征对非稳定现象的形成机理进行了探讨,小流量下由于径向流动阻塞了通道,并在叶顶间隙射流的作用下形成了通道内的周期性高压区,而前缘溢流和叶顶间隙射流耦合作用促成了叶顶进口附近周期性低压区的形成。  相似文献   

9.
An analysis of rotating flow in a turbogenerator rotor-stator gap with axial through flow is presented. The analysis considers changes in mass, angular momentum and static pressure that occur both between and across regions where cooling flow is injected, and may be applied to both smooth and rough rotors and stators. A simple calculation shows that most turbogenerator gap flows are undeveloped with an average tangential velocity different than half the rotor speed. The analysis is compared to data from a recent set of experiments. Comparisons are made for gap flow with both a constant and varying axial through flow; the latter caused by air injection from the rotor. In both cases, the agreement is extremely good  相似文献   

10.
The distribution of the angles of attack over the span of a rotor blade, together with blade element theory, provides a useful framework to understand forces, performance and other fluid dynamic phenomena of axial‐flow rotors. However, the angle of attack is not straightforward to define for a three‐dimensional rotor, where the flow is perturbed by the blade circulation, shed vorticity and wake development. This paper evaluates six methods to extract the angles of attack from blade‐resolved CFD simulations of axial‐flow turbines. Simulations of two different rotors are presented: a low solidity rotor designed for wind and a higher solidity rotor designed for tidal stream energy conversion. Of the analysed methods, five were obtained from the literature and are tested in terms of their internal parameters. The remaining method is named the streamtube analysis method (SAM) and is presented as an improvement on analysis methods that azimuthally average the flow data on the rotor plane, referred to as azimuthal averaging techniques (AATs). The SAM method accounts for the expansion of the streamtubes in flow‐field velocity sampling and exhibits improved convergence on the internal parameters compared with AAT. The six methods are benchmarked in terms of the angles of attack, axial induction factors and the local lift and drag coefficients, identifying that most perform well and converge with each other despite the different underlying assumptions or modelling approaches. However, given the limitations and inherent dependency on internal parameters, the line averaging and SAM are suggested for general flow analysis application.  相似文献   

11.
Mini centrifugal pumps having a diameter smaller than 100mm are employed in many fields. But the design method for the mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Therefore, mini centrifugal pumps with simple structure were investigated by this research. Splitter blades were adopted in this research to improve the performance and the internal flow condition of mini centrifugal pump which had large blade outlet angle. The original impeller without the splitter blades and the impeller with the splitter blades were prepared for experiment. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on performance and internal flow condition of mini centrifugal pump. On the other hand, a three dimensional unsteady numerical flow analysis was conducted to investigate the change of the internal flow according to the rotor rotation. It is clarified from the experimental results that the performance of the mini centrifugal pump is improved by the splitter blades. The blade-to-blade low velocity region was suppressed in the case with the splitter blades. In addition to that, the unsteady flows near the volute casing tongue were suppressed due to the splitter blades. In the present paper, the performance of the mini centrifugal pump is shown and the unsteady flow condition is clarified with the results of the numerical flow analysis. Furthermore, the effects of the splitter blades on the performance and the unsteady internal flow condition are investigated.  相似文献   

12.
The claw-type hydrogen pump has been applied in fuel cell vehicles (FCVs) because of its compact structure, high reliability, and oil-free quality. In this study, a three-dimensional transient computational fluid dynamics (CFD) modelling of a claw-type hydrogen pump used in FCVs was established. Hexahedral structured grids were generated and updated at an increment of 3° in rotating angle to ensure the mesh quality of the whole solving process. The leakage of radial clearance (RC) and axial clearance (AC) was considered. The presented modelling and simulation methods were validated by operating a claw pump at different pressure ratios. The pressure and velocity vector fields in both AC and middle plane, along with the mechanism of the fluid field distribution were analyzed in detail. The in-depth relationship amongst the fluctuation of discharge pressure, outlet mass flow rate and discharge area during the whole working process was revealed. P-θ and V-θ diagram of the whole operating cycle were analyzed. The influence of AC and RCs respectively on the volumetric efficiency of a claw pump was compared and evaluated. It is concluded that back flow in suction pipe happened near 360° as part of the discharge chamber was cut off from the exhaust port and high pressure gas from carryover flowed back into the inlet pipe. The pressure increase during the displacement process, theoretically zero, is actually significant and even comparable to the pressure increase during the compression and discharge process. In addition, volumetric efficiency is most sensitive to axial clearance, followed by radial clearance between rotor and casing, while radial clearance between the rotors has the least influence.  相似文献   

13.
Tilting the blade sections to the flow direction (blade sweep) would increase the operating range of an axial compressor due to modifications in the pressure and velocity fields on the suction surface. On the other hand, blade tip gap, though finite, has great influence on the performance of a turbomachine. The present paper investigates the combined effect of these two factors on various flow characteristics in a low speed axial flow compressor. For this present study, nine computational domains were modeled; three rotor sweep configurations (0°, 20° and 30°) and for three different clearance levels for each rotor. Commercial CFD solver ANSYS CFX 11.0 is used for the simulations. Results indicated that tip chordline sweep is found to improve the stall margin of the compressor by modifying the suction surface boundary layer migration phenomenon. Diffusion Factor (DF) contours showed the severity of stalling with unswept rotor. For the swept rotors, the zones of high probable stall are less severe and they become less in size with increasing sweep. Increment in the tip gap is found to gradually affect the performance of unswept rotor, while the effect is very high for the two swept rotors for the earlier increments. As a minimum clearance is unavoidable, swept rotors suffer relatively higher deviation from the idealistic behavior than the unswept rotor due to tip clearance.  相似文献   

14.
针对转子高速转动的特点,分析了转子风道气体运动状态,建立了数值计算模型.分析结果表明,转子风道气体运动是由风扇和转子高速转动共同作用的结果,以吸入式空冷汽轮发电机通风结构为例,转子以3 000 r/min转速绕轴高速转动可以使风道中进风量由0.14 kg/s增加到0.21 kg/s,必须考虑转子转动对风道中气体运动的影响;粘性模型应选择无粘,相同条件下转子风道出口风速模型试验和数值模拟结果对比表明,数值模拟结果符合工程实际.转子风道中气体运动流场合理计算模型应为:以吸入式风扇和转子风道进口为进出口边界条件,流体边界条件考虑转子转动,墙边界条件中反映管壁表面粗糙度的相对粗糙度系数和常量分别取为k~+_s=500~1000和C_(ks)=1.0,粘性模型选择无粘,可用此计算模型对空冷汽轮发电机转子风道中气体运动流场进行分析.  相似文献   

15.
Design method for a mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Then, a semi-open impeller for the mini centrifugal pump with 55mm impeller diameter is adopted in this research to take simplicity and maintenance into consideration. Splitter blades are adopted in this research to improve the per- formance and internal flow condition of mini centrifugal pump having large blade outlet angle. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on the performance and internal flow condition of the mini centrifugal pump. A three dimensional steady numerical flow analysis is con- ducted to analyze rotor, volute efficiency and loss caused by a vortex. It is clarified from the experimental results that the performance of the mini centrifugal pump is improved by the effect of the splitter blades. Flow condition at outlet of the rotor becomes uniform and back flow regions are suppressed in the case with the splitter blades. Further, the volute efficiency increases and the vortex loss decreases. In the present paper, the performance of the mini centrifugal pump is shown and the flow condition is clarified with the results of the experiment and the nu- merical flow analysis. Furthermore, the performance analyses of the mini centrifugal pumps with and without the splitter blades are conducted.  相似文献   

16.
介绍了研究动静态转子分离器性能的试验装置,使用煤粉为物料,对分离器在不同风量和不同转子转速的条件下进行了试验研究.转子转速增加和风量降低均使分离器出口煤粉变细,分离器出口煤粉R45的值最低为0;综合分离效率随着转子转速增加有极大值,随风量增加而下降,试验中综合分离效率最大值为85.55%;气固两相阻力损失随转子转速增加有极小值,与风量成正比关系.  相似文献   

17.
Roto-dynamic pumps offer better match with wind rotors for low lift-high discharge water pumping applications. Tremendous potential for such systems does exist in many developing countries like India. In the present study, a mathematical model is proposed for estimating the performance of wind-driven roto-dynamic pumps at various operating conditions. In contrast with the earlier attempts in this direction, an integrated approach incorporating the characteristics of the rotor, pump and the wind regime is envisaged for formulating the model. The model is validated using the field performance data from a 5 m, five-bladed experimental rotor coupled with a low speed centrifugal pump. Performance of the system at fluctuating conditions of wind regimes is estimated and compared with that of a system with reciprocating pump. Wind driven roto-dynamic pumps are found to offer distinctly better performance than the conventional system with reciprocating pumps. Effects of the specific speed and specific diameter of the pump on the gear ratio and optimum pump size are also discussed. A low specific speed roto-dynamic pump with reasonable specific diameter is found to be suitable for coupling with wind rotors for water pumping application.  相似文献   

18.
Mini turbo-pumps having a diameter smaller than 100mm are employed in many fields; automobile radiator pump, ventricular assist pump, cooling pump for electric devices, washing machine pump and so on. Further, the needs for mini turbo-pumps would become larger with the increase of the application of it for electrical machines. It is desirable that the mini turbo-pump design is as simple as possible due to restriction to make precise manufactures. But the design method for the mini turbo-pump is not established because the internal flow condition for these small-sized fluid machineries is not clarified and conventional theory is not conductive for small-sized pumps. Three types of rotors with different outlet angles are prepared for an experiment and a numerical analysis. The performance tests are conducted with these rotors in order to investigate the effect of the blade outlet angle on performance and internal flow condition of mini turbo-pumps. It is clarified from the experimental results that head of the mini turbo-pump increases and maximum efficiency flow rate shifts to larger flow rate according to the increase of the blade outlet angle, however the maximum efficiency decreases with the increase of it. In the present paper, the performance of the mini turbo-pump is shown and the internal flow conditions are clarified with the results of the experiment and the numerical flow analysis. Furthermore, the effects of the blade outlet angle on the performance are investigated and high performance design with simple structure for the mini turbo-pump would be considered.  相似文献   

19.
为了研究跨声速压气机内部流动失稳对压气机性能的影响,对跨声速轴流压气机NASA转子37进行三维定常数值模拟,研究不同设计转速下跨声速轴流压气机稳定运行及内部流动失稳现象。研究发现:转速不变时近堵塞点的等熵效率高于近失速点;随着转速降低,压气机稳定运行范围变宽、效率增大及流动损失变小;压气机叶栅通道出现堵塞情况的叶高截面范围随着转速的降低而逐渐增大,这导致压气机叶片在近失速点处的流动失稳情况变严重。  相似文献   

20.
特殊工况下柱塞泵和液压缸的性能测试   总被引:1,自引:0,他引:1  
为了验证轴向柱塞泵和液压缸这2种液压元件在海洋波浪能转换中的适用性,通过试验研究了轴向柱塞泵在极低转速条件下的工作性能,并对液压缸改造为液压泵使用时的工作性能进行了分析.结果表明:轴向柱塞泵在远离设计转速的工况下仍能保持较高的容积效率,并且在较大的压力变化范围内性能稳定;液压缸完全可以改造为液压泵使用,但在较高的运动速度下工作时,需保证液压缸进油顺畅.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号