首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports about investigations on some important aspects of surface integrity of the miniature spur gears manufactured by wire electrical discharge machining (WEDM) process. The investigations included study of variation of form errors (deviations in profile and lead) and surface roughness with discharge energy parameters, i.e., voltage and/or pulse-on time for the miniature gears. The effect of WEDM process on flank surface topography, bearing length parameters, microstructure, and microhardness for the best quality miniature gear were also studied. The manufactured miniature gears were of external spur type having 9.8 mm as outside diameter, 4.9-mm thickness, 0.7 mm as module, 12 teeth, and were made of brass. It was found that combination of low discharge energy parameters resulted in better form accuracy, surface finish, and microstructure ensuring enhanced service life and better functional characteristics of the WEDMed miniature gears. The best quality miniature gear had form errors (i.e., lead and profile deviations) as low as 5.4 μm, very little variation in the actual surface topography from the theoretical one, an average surface roughness of 1 μm, and maximum surface roughness within the entire evaluation length as 6.4 μm, showed consistent surface finish measured by other surface roughness parameters, good bearing area curve, and crack-free gear tooth surface without significant alteration in microhardness. Results of the present work demonstrate the superiority of the WEDM process over the conventional miniature gear manufacturing processes.  相似文献   

2.
The wire electric discharge machining (WEDM) process is a violent thermal process in which a certain volume of metal is eroded by thousands of electrical discharges in a fraction of 1 s. The process is widely used in tooling, especially in the cutlery and mold industry. However, the poor properties of surfaces such as high tensile residual stresses, high surface roughness, white layers, and microcracks are generated in the process. These properties vary with different levels of process parameters. In this paper, a new graphical evaluation of micron-scale surface topography on WEDM process is proposed by the fractal method. The objective is to quantify 3D micron-scale surface topography effect of process parameters such as pulse-on time, pulse-off time, cutting feed rate, wire tension, wire speed, and water pressure on working surface in dressing. Firstly, adaptive measuring was conducted on the basis of 3D micron-scale surface topography by the ?18(21×35) Taguchi standard orthogonal experiments; secondly, the fractal dimension was conducted to identify 3D micron-scale surface topography; and finally, the effect of WEDM process parameters was investigated with reference to the fractal dimension (FD) of 3D micron-scale surface. The results have shown that the pulse-on time is the most dominant factor in affecting the surface texture. Moreover, the interaction effect between process parameters is analyzed. It has also been observed that the optimized combination of pulse-on time of 3 μs, pulse-off time of 20 μs, cutting feed rate of 4 mm/min, wire tension of 6 kgf, wire speed of 6 m/min, and water pressure of 5 kgf is suitable for 3D micron-scale surface, and the FD of 3D micron-scale surface is increased by 11 %.  相似文献   

3.
In this investigation, the effect of wire electrical discharge machining (WEDM) parameters such as pulse-on time (T ON), pulse-off time (T OFF), gap voltage (V) and wire feed (F) on material removal rate (MRR) and surface roughness (R a) in metal matrix composites (MMCs) consisting of aluminium alloy (Al6063) and silicon carbide (SiCp) is discussed. The Al6063 is reinforced with SiCp in the form of particles with 5%, 10% and 15% volume fractions. The experiments are carried out as per design of experiments approach using L9 orthogonal array. The results were analysed using analysis of variance and response graphs. The results are also compared with the results obtained for unreinforced Al6063. From this study, it is found that different combinations of WEDM process parameters are required to achieve higher MRR and lower R a for Al6063 and composites. Generally, it is found that the increase in volume percentage of SiC resulted in decreased MRR and increased R a. Regression equations are developed based on the experimental data for the prediction of output parameters for Al6063 and composites. The results from this study will be useful for manufacturing engineers to select appropriate WEDM process parameters to machine MMCs of Al6063 reinforced with SiCp at various proportions.  相似文献   

4.
Unconventional machining like wire electric discharge machining/cutting (WEDM/WEDC) seems to be a better choice for machining/cutting the metal matrix composites (MMCs) because it offers easy control and has the capability of machining intricate complex shapes. But wire breakage in the WEDM/WEDC process decreases the machining accuracy and the quality of the machined surface. This paper describes the effect of four input process parameters (i.e., servo voltage, pulse-on time, pulse-off time, and wire feed rate) on wire breakage frequency and the microstructure of the cut surface during WEDC of SiCp/6061 Al MMC. An optimum range of input parameters has been bracketed as the outcome of this work for determining the effects of input process parameters on the average cutting speed, material removal rate, and surface roughness during WEDC of SiCp/6061 Al MMC. This range of input parameters can also be used for carrying out further research to develop the models for WEDC of SiCp/6061 Al MMC and to optimize the WEDC parameters for smooth cutting.  相似文献   

5.
The near-dry wire-cut electrical discharge machining (WEDM) process is an environment-friendly manufacturing process, in which there is no harmful effect to the operators. The authors focus on the non-polluting ways to cut the materials and to meet the technical requirements like high material removal rate (MRR) and low surface roughness (Ra). In the near-dry WEDM, the finite discrete periodic series sparks between the wire electrode and conducting work material separated by minimum quantity of deionized water mixed with compressed air (air-mist) as a dielectric medium. In the present research, parametric analysis of the process has been performed with the molybdenum wire tool and high speed steel (HSS-M2) work piece. Experiments have been performed using air-mist as the dielectric medium to study the impact of gap voltage, pulse-on time, pulse-off time, air-mist pressure and discharge current on the MRR and Ra using the mixed orthogonal (L18) array-Taguchi method. Taguchi based analysis of variance test was performed to identify the significant parameters. The gap voltage, pulse-on time, discharge current and air-mist pressure were found to have momentous effects on MRR and Ra. The best regression models for MRR and Ra have been developed by regression analysis. The optimal rough and finish cutting parameters have been predicted by Pareto-front using the multi-objective evolutionary algorithm (MOEA).  相似文献   

6.
齿距偏差直接影响齿轮传动的性能,一直是最受重视的齿轮精度指标之一。如何快速、准确地获取中等精度齿轮的齿距偏差是汽车齿轮行业亟待解决的关键问题,但传统方法存在测量效率低、重复性差等不足。所提方法采用齿廓偏差曲线的全部信息作为齿距偏差的评价依据,采用统计分析方法定义和计算齿距评价新指标,克服了传统方法使用小样本和极值法进行齿距偏差评价的不足。所提方法可充分利用齿轮测量数据,具有评价指标值对随机误差不敏感、重复测量结果一致性好、评价结果与齿轮实际使用性能之间相关性更加紧密的特点。在汽车齿轮快速测量机上通过实际测量实验验证了新方法的使用效果,齿距测量速度高达0.3 s/齿面时仍具有很高的重复测量精度。  相似文献   

7.
This paper discusses the comparison of micro machining process using conventional and micro wire electrical discharge machining (WEDM) for fabrication of miniaturized components. Seventeen toothed miniaturized spur gear of 3.5 and 1.2 mm outside diameter were fabricated by conventional and micro WEDM respectively. The process parameters for both conventional and micro WEDM were optimized by preliminary experiments and analysis. The gears were investigated for the quality of surface finish and dimensional accuracy which were used as the criteria for the process evaluation. An average surface roughness (Ra) of 50 nm and dimensional accuracy of 0.1–1 μm were achieved in micro WEDM. Whenever applied conventional WEDM for meso/micro fabrication, a Ra surface roughness of 1.8 μm and dimensional accuracy of 2–3 μm were achieved. However, this level of surface roughness and dimensional accuracy are acceptable in many applications of micro engineering. A window of conventional WEDM consisting of low energy discharge parameters is identified for micromachining.  相似文献   

8.
Wire electrical discharge machining (WEDM) is a commonly used process in manufacturing industries to machine electrically conductive materials with complex shapes and varying hardness. The performance of any machining process is based on right selection of input variables. The selection of optimal parameters in WEDM is a difficult task as it is a highly stochastic process in nature. The present work deals with the development of empirical relationships for the output responses of kerf (cutting width) and wire wear ratio considering pulse-on time, pulse-off time, wire tension, dielectric flow rate, and wire feed as the input variables. Response surface methodology is used to find the quantitative relations. Subsequently, the developed mathematical models are used for optimization. A recently developed global optimization technique, harmony search algorithm, is applied to find the optimal set of input control variables.  相似文献   

9.
Wire-cut Electro Discharge Machining (WEDM) is a special form of conventional EDM process in which the electrode is a continuously moving conductive wire. The present study aims at determining parametric influence and optimum process parameters of Wire-EDM using Taguchi's technique and a Genetic algorithm. The variation of the performance parameters with machining parameters was mathematically modeled by Regression analysis method. The objective functions are defined as Dimensional Error (DE), Surface Roughness (SR) and Volumetric Material Removal Rate (VMRR). Experiments were designed as per Taguchi's L16 Orthogonal Array (OA) wherein Pulse-on duration, Current, Pulse-off duration, Bed-speed and Flushing rate have been considered as the important input parameters. The matrix experiments were conducted for the material Hot Die Steel (HDS) having the thickness of 40 mm. The Heat Affected Zone (HAZ) characteristics of the eroded materials were assessed by Scanning Electron Microscope (SEM) and the microhardness of the material was tested using Vickers microhardness tester. The results of the study reveal that among the machining parameters, it is preferable to go for smaller pulse-off duration for achieving overall good performance. Regarding pulse-on duration, higher values are recommended for error constrained machining with higher MRR and constrained/limited values for attaining good surface texture. Smaller current is suggested for better surface finish/texture control, medium range for error control and high value for MRR. Finally, the validation exercise was performed with the optimum levels of the process parameters. The results confirm the efficiency of the approach employed for optimization of process parameters in this study.  相似文献   

10.
In this paper, the effects and the optimization of cutting parameters on surface roughness (Ra) and material removal rate (MRR) in the wire electrical discharge machining (WEDM) of high hardness tool steel YG15 are analyzed. In the WEDM process, the key process parameters, such as pulse-on time, pulse-off time, power, cutting feed rate, wire tension, wire speed, and water pressure, are optimized. Experimental data were initially collected based on the Taguchi method of experimental design, which are $L_{18}\left (2^1\times 3^5\right )$ and $L_{18}\left (2^1\times 3^4\right )$ Taguchi standard orthogonal array on rough and finish cutting experiments, respectively. The level of importance of the cutting parameters on the Ra and MRR was determined on both finish and rough cutting by using statistical analyses; average gap voltage is discussed in order to balance cutting efficiency and stability on both finish and rough cutting. In addition, comparative analysis of finish and rough cutting is drawn to analyze the difference between rough cutting and finish cutting. Then, regression models and signal-to-noise ratio are used to obtain the optimum cutting parameter combination. Finally, the results present the optimized MRR and Ra of the rough and finish process, respectively, and confirm the efficiency and abilities of the model.  相似文献   

11.
电火花线切割加工模具或齿轮渐开线齿廓之前,需先作曲线拟合,以便计算线切割编程数据.文章给出高精度的渐开线齿廓线曲线二点拟合法以及电火花线切割加工模具齿形和内齿精度简易检测方法.该方法对各种模具和圆柱齿轮的渐开线齿形加工均适用.  相似文献   

12.
针对现有渐开线齿轮齿廓曲线拟合方法精度不高的缺点,提出了一种用移动最小二乘法(MLS)拟合齿廓曲线的新方法,并通过齿距偏差的计算对该方法进行了实例验证。利用三坐标测量机对某齿轮进行测量,得到齿廓数据点和齿距偏差;根据移动最小二乘法原理和实验数据,用MATLAB编程实现了齿廓曲线的拟合;根据拟合结果,利用图解法计算出了左齿廓齿距偏差。与最小二乘法(LS)的拟合结果的对比表明,用移动最小二乘法拟合齿廓曲线精度更高,误差更小,具有良好的拟合效果。齿距偏差计算结果表明,单个齿距偏差和齿距累积偏差与实测值一致,表明该方法准确、有效。研究结果可为齿廓曲线的拟合和齿距偏差的计算提供参考。  相似文献   

13.
降低齿轮齿距累积偏差的方法   总被引:1,自引:1,他引:1  
为了减小齿轮磨削加工中的磨床系统分度误差,提高齿轮加工精度,分析了齿轮磨床分度误差、齿轮安装偏心和齿轮齿距偏差之间的关系,获得了分度误差的计算方法,并计算出了齿轮磨床的分度误差。依据计算得到的分度误差值调整磨床,降低磨床分度误差,减小齿轮齿距累积偏差,提高了齿轮加工精度。以Y7125大平面砂轮磨齿机床为例验证了提出方法的可行性。建立了齿轮安装偏心和齿廓偏差的数学模型,求出了齿轮安装偏心的幅值和相位角,然后由齿轮安装偏心、磨床分度误差和齿轮齿距偏差的关系得到磨床的分度误差值。根据计算得到的分度误差值调整磨床分度盘,使磨床的分度误差从17.7μm减少为3.3μm,被加工齿轮的齿距累积总偏差由46.9μm降低到11.5μm,齿距精度达到三级。验证结果表明,按照这种方法调整磨床可以快速有效地降低磨床的系统分度误差,从而降低齿轮的齿距累积偏差。  相似文献   

14.
Computer vision algorithms for measurement and inspection of spur gears   总被引:3,自引:0,他引:3  
E.S. Gadelmawla 《Measurement》2011,44(9):1669-1678
Precision measurement of gears plays a vital role in gear measurement and inspection. The current methods of gear measurement are either time consuming or expensive. In addition, no single measurement method is available and capable of accurately measuring all gear parameters while significantly reducing the measurement time. The aim of this paper is to utilize the computer vision technology to develop a non-contact and rapid measurement system capable of measuring and inspecting most of spur gear parameters with an appropriate accuracy. A vision system has been established and used to capture images for gears to be measured or inspected. A software (named GearVision) has been especially developed in-house using Microsoft Visual C++ to analyze the captured images and to perform the measurement and inspection processes. The introduced vision system has been calibrated for metric units then it was verified by measuring two sample gears and comparing the calculated parameters with the actual values of gear parameters. The maximum differences between the calculated parameters and the design values were ±0.101 mm for a spur gear with 156 mm outside diameter. For small gears, higher accuracy could be obtained and as well as small difference.  相似文献   

15.
TiNiCu alloy belongs to new class of shape memory alloy (SMA), which exhibits superior properties like shape memory effect, super elasticity and reversible martensitic transformation phase and thus find broad applications in actuators, micro tools and stents in biomedical components. Even though, SMA demonstrates outstanding property profile, traditional machining of SMAs is fairly complex and hence non-traditional machining like wire electric discharge machining (WEDM) has been performed. Hence, there is a need to investigate the WEDM performance characteristics of shape memory alloys due to excellent property profile and potential applications. In the present investigation, various machining characteristics like material removal rate (MRR), surface roughness, surface topography and metallographic changes have been studied and the influence of wire material on TiNiCu alloy machining characteristics has also been evaluated through ANOVA. Ti50Ni50−xCux=10, 20 was prepared by vacuum arc melting process. The proposed alloy as-cast material exhibits austenite property (B2 phase) and having higher hardness when compared to TiNi alloy. The investigation on WEDM of Ti50Ni50−xCux alloy reveals that the machining parameters such as servo voltage, pulse on time and pulse off time are the most significant parameters affecting MRR as well as surface roughness using both brass and zinc coated brass wires. However, machining with zinc coated brass wire yields reduced surface roughness and better MRR and also produces less surface defects on the machined surface of Ti50Ni50−xCux alloys.  相似文献   

16.
Gears are among the most important mechanical components of the modern industry. The topography of the gears’ tooth flank has an intricate and complex form and requires great finishing and quality. Commonly, traditional grinding processes are applied to finishing gear profile. However, the use of honing process has grown in recent years to provide the best finishing in industrial products. In this study, the honing process was improved applying a particle swarm optimization. Pinions of steering systems were used as work pieces to testify the optimization technique. The input parameters were the spindle speed, feed rate in X direction, feed rate in Z direction, oscillation time, and spark out time. The experimental measures were compared with simulation tests using the responses total profile deviation (fα), total helix deviation (fβ), and total cumulative pitch deviation (fp). The results showed that profile error was minimized, and the quality was improved based a set of strategies that were held simultaneously in the input parameters.  相似文献   

17.
This paper presents surface-profiling based gear pitch deviation measurement for an involute spur gear. A rotary profiling system, which consists of an air-bearing spindle and a displacement sensor with a diamond stylus, is employed to measure gear pitch deviation. In measurement of gear pitch deviation, an eccentric error between a gear axis and a motion axis of the rotary stage in the profiling system would affect accuracy of gear profile measurement. In this paper, at first, the influence of the eccentric error on measurement of gear pitch deviation is estimated in computer simulation based on a geometric model of the profiling system. After that, a new scanning method named “opposite-direction dual scanning method” is proposed so that a steep profile of gear flank surface with a local slope of up to 90° can be measured by the developed rotary profiling system. For compensating distortions in the measured gear tooth profile, which are induced not only by the eccentric error but also by a probe offset introduced by the proposed scanning method, a self-calibration and compensation method is applied. To verify the feasibility of the proposed method, measurement of gear pitch deviation of a master involute spur gear with a certificate data is carried out. Measurement uncertainty of the proposed method is also analyzed.  相似文献   

18.
Gears are key elements of power transmission systems, and the inspection of their pitch deviation is one of the most important tests on gears. The specifications of gears are assessed using gear measuring instruments (GMIs) or coordinate measuring machines (CMMs), and the results of the measurements must be validated under an appropriate traceability system. In the traceability system, calibrated gauges whose measuring uncertainties are estimated are necessary. In the case of pitch deviation measurement, special artefacts or gears manufactured with high dimensional accuracy are used as reference gauges. In this paper, authors propose calibration and uncertainty evaluation methods for the single pitch deviation of gears measured using CMMs. First, the evaluation of single pitch deviation using a multiple-measurement technique and the estimation of its uncertainty based on the analysis of variance are formulated. Second, a technique for reducing the measurement trials based on the symmetry of the measurement is discussed. Finally, the proposed calibration method is validated through experiments.  相似文献   

19.
Flank deviation is one of the important factors that greatly affect helical gear strength. A qualitative analysis is performed using finite element method (FEM) for the effects of flank deviation on load distributions for helical gear based on ANSI/AGMA ISO 1328-1 (standard for cylindrical gears — ISO System of Accuracy — Part 1: Definitions and Allowable Values of Deviations Relevant to Corresponding Flanks of Gear Teeth). To analyze the effects of flank deviation, tooth contact analysis (TCA) is developed and load distributions of helical gears with flank deviation are presented. Load distributions in contact lines are derived and compared to each other under grade 5 and 7 after taking five types of flank deviation, including single pitch deviation, profile form deviation, profile slope deviation and helix form deviation as well as helix slope deviation, into account. It is found that the effects of individual flank deviation on load distribution have the superposition property. Flank crowning and tip relief corrections must be carefully regarded in the design process because of the effects of flank deviation on load distributions.  相似文献   

20.
《Wear》2007,262(3-4):390-394
In this experimental study, width modification of a spur gear was investigated to fix instantaneous pressure changes along single meshing area on the gear profile. In this gear, variable pressure distribution caused by the single and double teeth meshing and the radius of curvature along the active gear profile was approximately kept constant by maintaining a constant ratio of applied load to the tooth width (F/b) on every point. Hence, Hertz pressure distribution along the gear profile was approximately equally achieved. Other factors affecting wear were kept constant during the experiment. The specimen used was made from AISI 4140 steel. Finally, the amount of wear in the teeth profiles between the modified and unmodified gears was compared. And wear depth of modified gear along the meshing area was almost uniform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号