首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work deals with a comparative study on flank wear, surface roughness, tool life, volume of chip removal and economical feasibility in turning high carbon high chromium AISI D2 steel with multilayer MTCVD coated [TiN/TiCN/Al2O3/TiN] and uncoated carbide inserts under dry cutting environment. Higher micro hardness of TiN coated carbide samples (1880 HV) compared to uncoated carbide (1430 HV) is observed and depicts better resistance against abrasion. The low erosion rate was observed in TiN coated insert compared to uncoated carbide. The tool life of TiN coated insert is found to be approximately 30 times higher than the uncoated carbide insert under similar cutting conditions and produced lower surface roughness compared to uncoated carbide insert. The dominant wear mechanism was found to be abrasion and progression of wear was steady using multilayer TiN coated carbide insert. The developed regression model shows high determination coefficient i.e. R2 = 0.977 for flank wear and 0.94 for surface roughness and accurately explains the relationship between the responses and the independent variable. The machining cost per part for uncoated carbide insert is found to be 10.5 times higher than the multilayer TiN coated carbide inserts. This indicates 90.5% cost savings using multilayer TiN coated inserts by the adoption of a cutting speed of 200 m/min coupled with a tool feed rate of 0.21 mm/rev and depth of cut of 0.4 mm. Thus, TiN coated carbide tools are capable of reducing machining costs and performs better than uncoated carbide inserts in machining D2 steel.  相似文献   

2.
Lower surface roughness and sharper cutting edge are beneficial for improving the machining quality of the cut?ting tool, while coatings often deteriorate them. Focusing on the diamond coated WC?Co milling cutter, the abrasive flow machining(AFM) is selected for reducing the surface roughness and sharpening the cutting edge. Comparative cutting tests are conducted on di erent types of coated cutters before and after AFM, as well as uncoated WC?Co one, demonstrating that the boron?doped microcrystalline and undoped fine?grained composite diamond coated cutter after the AFM(AFM?BDM?UFGCD) is a good choice for the finish milling of the 6063 Al alloy in the present case, because it shows favorable machining quality close to the uncoated one, but much prolonged tool lifetime. Besides, compared with the micro?sized diamond films, it is much more convenient and e cient to finish the BDM?UFGCD coated cutter covered by nano?sized diamond grains, and resharpen its cutting edge by the AFM, owing to the lower initial surface roughness and hardness. Moreover, the boron incorporation and micro?sized grains in the underly?ing layer can enhance the film?substrate adhesion, avoid the rapid film removal in the machining process, and thus maximize the tool life(1040 m, four times more than the uncoated one). In general, the AFM is firstly proposed and discussed for post?processing the diamond coated complicated cutting tools, which is proved to be feasible for improving the cutting performance  相似文献   

3.
In recent years, hard machining using CBN and ceramic inserts became an emerging technology than traditional grinding and widely used manufacturing processes. However the relatively high cost factors associated with such tools has left a space to look for relatively low cost cutting tool materials to perform in an acceptable range. Multilayer coated carbide insert is the proposed alternative in the present study due to its low cost. Thus, an attempt has been made to have an extensive study on the machinability aspects such as flank wear, chip morphology, surface roughness in finish hard turning of AISI 4340 steel (HRC 47 ± 1) using multilayer coated carbide (TiN/TiCN/Al2O3/TiN) insert under dry environment. Parametric influences on turning forces are also analyzed. From the machinability study, abrasion and chipping are found to be the dominant wear mechanism in hard turning. Multilayer TiN coated carbide inserts produced better surface quality and within recommendable range of 1.6 μm i.e. comparable with cylindrical grinding. At extreme parametric conditions, the growth of tool wear was observed to be rapid thus surface quality affected adversely. The chip morphology study reveals a more favorable machining environment in dry machining using TiN coated carbide inserts. The cutting speed and feed are found to have the significant effect on the tool wear and surface roughness from ANOVA study. It is evident that, thrust force (Fy) is the largest component followed by tangential force (Fz) and the feed force (Fx) in finish hard turning. The observations yield the machining ability of multilayer TiN coated carbide inserts in hard turning of AISI 4340 steel even at higher cutting speeds.  相似文献   

4.
The present work deals with some machinability studies on flank wear, surface roughness, chip morphology and cutting forces in finish hard turning of AISI 4340 steel using uncoated and multilayer TiN and ZrCN coated carbide inserts at higher cutting speed range. The process has also been justified economically for its effective application in hard turning. Experimental results revealed that multilayer TiN/TiCN/Al2O3/TiN coated insert performed better than uncoated and TiN/TiCN/Al2O3/ZrCN coated carbide insert being steady growth of flank wear and surface roughness. The tool life for TiN and ZrCN coated carbide inserts was found to be approximately 19 min and 8 min at the extreme cutting conditions tested. Uncoated carbide insert used to cut hardened steel fractured prematurely. Abrasion, chipping and catastrophic failure are the principal wear mechanisms observed during machining. The turning forces (cutting force, thrust force and feed force) are observed to be lower using multilayer coated carbide insert in hard turning compared to uncoated carbide insert. From 1st and 2nd order regression model, 2nd order model explains about 98.3% and 86.3% of the variability of responses (flank wear and surface roughness) in predicting new observations compared to 1st order model and indicates the better fitting of the model with the data for multilayer TiN coated carbide insert. For ZrCN coated carbide insert, 2nd order flank wear model fits well compared to surface roughness model as observed from ANOVA study. The savings in machining costs using multilayer TiN coated insert is 93.4% compared to uncoated carbide and 40% to ZrCN coated carbide inserts respectively in hard machining taking flank wear criteria of 0.3 mm. This shows the economical feasibility of utilizing multilayer TiN coated carbide insert in finish hard turning.  相似文献   

5.
Machining of hard materials has become a great challenge for several decades. One of the problems in this machining process is early tool wear, and this affects the machinability of hard materials. In order to increase machinability, cutting tools are widely coated with nanostructured physical vapor deposition hard coatings. The main characteristics of such advanced hard coatings are high microhardness and toughness as well as good adhesion to the substrate. In this paper, the influence of hard coatings (nanolayer AlTiN/TiN, multilayer nanocomposite TiAlSiN/TiSiN/TiAlN, and commercially available TiN/TiAlN) and cutting parameters (cutting speed, feed rate, and depth of cut) on cutting forces and surface roughness were investigated during face milling of AISI O2 cold work tool steel (~61 HRC). The experiments were conducted based on 313 factorial design by response surface methodology, and response surface equations of cutting forces and surface roughness were obtained. In addition, the cutting forces obtained with the coated and uncoated tools were compared. The results showed that the interaction of coating type and depth of cut affects surface roughness. The hard coating type has no significant effect on cutting forces, while the cutting force F z is approximately two times higher in the case of uncoated tool.  相似文献   

6.
高硅铝合金由于硅含量很高,故切削加工性较差,切削刀具极易磨损且已加工表面存在大量缺陷.为进一步研究材料加工损伤,采用化学气相沉积法制备了金刚石涂层铣刀,开展70%Si/Al(70%指质量分数)合金材料铣削试验.试验研究了铣削力、刀具磨损及加工损伤机理,并与常用TiN涂层铣刀进行了对比.结果 表明:铣削过程中由于初晶硅硬...  相似文献   

7.
Industrial applications of the micro milling process require sufficient experimental data from various micro tools. Research has been carried out on micro milling of various engineering materials in the past two decades. However, there is no report in the literature on micro milling of graphite. This paper presents an experimental investigation on micro machinability of micro milling of moulded fine-grained graphite. Full immersion slot milling was conducted using diamond-coated, TiAlN-coated and uncoated tungsten carbide micro end mills with a uniform tool diameter of 0.5 mm. The experiments were carried out on a standard industrial precision machining centre with a high-speed micro machining spindle. Design of experiments (DoE) techniques were applied to design and analysis of the machining process. Surface roughness, surface topography and burrs formation under varying machining conditions were characterized using white light interferometry, SEM and a precision surface profiler. Influence of variation of cutting parameters including cutting speeds, feedrate and axial depth of cut on surface roughness and surface damage was analysed using ANOVA method. The experimental results show that feedrate has the most significant influence on surface roughness for all types of tools, and diamond tools are not sensitive to cutting speed and depth of cut. Surface damage and burrs analysis show that the primary material removal mode is still brittle fracture or partial ductile in the experimental cutting conditions. 3D intricate micro EDM electrodes were fabricated with good dimensional accuracy and surface finishes using optimized machining conditions to demonstrate that micro milling is an ideal process for graphite machining.  相似文献   

8.
Abstract

The present study focuses on the effects of cutting speed, feed rate and cutting tool material on the machining performance of carbon graphite material. Polycrystalline Diamond (PCD) cutting tools are used in machining experiments and its performance is compared with the tungsten carbide (WC) and Cubic Boron Nitride (CBN) tools. Machining performance criteria such as flank and nose wear and resulting surface topography and roughness of machined parts were studied. This study illustrates that feed rate and cutting tool material play a dominant role in the progressive wear of the cutting tool. The highest feed rate and cutting speed profoundly reduce the tool wear progression. The surface roughness and topography of specimens are remarkably influenced from the tool wear. Major differences are found in the wear mechanisms of PCD and WC and CBN cutting tools.  相似文献   

9.
This paper presents the mathematical modelling and parametric optimization on flank wear and surface roughness based on response surface methodology and grey-based Taguchi method in finish hard turning of AISI 4340 steel (HRC 47 ± 1) using multilayer coated carbide (TiN/TiCN/Al2O3/TiN) insert under dry environment. The economical feasibility of utilizing multilayer TiN coated carbide insert has been described. Model adequacy has been checked using correlation coefficients. From main effect, it is evident that, cutting speed is the most significant factor for flank wear followed by depth of cut and feed. Again, feed is the most significant factor for surface roughness followed by cutting speed and depth of cut. The coefficient of determination (R2) is more than 75% for RSM models developed, which shows the high correlation exist between the experimental and predicted values. The experimental vs. predicted values of flank wear and surface roughness (Ra and Rz) are also found to be very close to each other implying significance of models developed. The improvement of grey relational grade from initial parameter combination (d2–f3–v4) to the optimal parameter combination (d1–f1–v3) is found to be 0.3093 using grey relational analysis coupled with Taguchi method for simultaneous optimization of responses. Flank wear (VBc) and surface roughness parameters (Ra and Rz) are decreased 1.9, 2.32 and 1.5 times respectively considering optimal parametric combinations for multi-responses. The calculated total machining cost per part is only Rs. 3.17 due to higher tool life (47 min at their optimal level) of multilayer TiN coated carbide insert. It brings to the reduction of downtime and increases the savings.  相似文献   

10.
Hard coatings are an important factor affecting the cutting performance of tools. In particular, they directly affect tool life, cutting forces, surface quality and burr formation in the micro-milling process. In this study, the performance of nano-crystalline diamond (NCD) coated tools was evaluated by comparing it with TiN-coated, AlCrN-coated and uncoated carbide tools in micro-milling of Ti6Al4V alloy. A series of micro-milling tests was carried out to determine the effects of coating type and machining conditions on tool wear, cutting force, surface roughness and burr size. Flat end-mill tools with two flutes and a diameter of 0.5 mm were used in the micro-milling process. The minimum chip thickness depending on both the cutting force and the surface roughness were determined. The results showed that the minimum chip thickness is about 0.3 times that of the cutter corner radius for Ti6Al4V alloy and changes very little with coating type. It was observed from wear tests that the dominant wear mechanism was abrasion. Maximum wear occurred on NCD-coated and uncoated tools. In addition, maximum burr size was obtained in the cutting process with the uncoated tool.  相似文献   

11.
This paper focused on high-speed milling of Al6063 matrix composites reinforced with high-volume fraction of small-sized SiC particulates and provided systematic experimental study about cutting forces, thin-walled part deformation, surface integrity, and tool wear during high-speed end milling of 65% volume fraction SiCp/Al6063 (Al6063/SiCp/65p) composites in polycrystalline diamond (PCD) tooling. The machined surface morphologies reveal that the cutting mechanism of SiC particulates plays an important role in defect formation mechanisms on the machined surface. In high-speed end milling of Al6063/SiCp/65p composites, the cutting forces are influenced most considerably by axial depth of cut, and thus the axial depth of cut plays a dominant role in the thin-walled parts deformation. Increased milling speed within a certain range contributes to reducing surface roughness. The surface and sub-surface machined using high-speed milling suffered from less damage compared to low-speed milling. The milling speed influence on surface residual stress is associated with milling-induced heat and deformation. Micro-chipping, abrasive wear, graphitization, grain breaking off, and built-up edge are the dominated wear mechanism of PCD tools. Finally, a series of comparative experiments were performed to study the influence of tool nose radius, average diamond grain size, and machining parameters on PCD tool life.  相似文献   

12.
Machining of Nimonic C-263 has always been a challenging task owing to its hot strength, low thermal conductivity, tendency to work harden and affinity towards tool materials. Although coated tools have been used to overcome some of these challenges, selection of coated tool with appropriate deposition technique is of immense significance. The current study attempts to comparatively evaluate various performance measures in machining of Nimonic C-263 such as surface roughness, cutting force, cutting temperature, chip characteristics, and tool wear with particular emphasis on different modes of tool failure for commercially available inserts with multi-component coating deposited using chemical vapour deposition (CVD) and physical vapour deposition (PVD) techniques. Influence of cutting speed (Vc) and machining duration (t) has also been investigated using both coated tools. The study demonstrated remarkable decrease in surface roughness (74.3%), cutting force (6.3%), temperature (13.4%) and chip reduction coefficient (22%) with PVD coated tool consisting of alternate layers of TiN and TiAlN over its CVD coated counterpart with TiCN/Al2O3 coating in bilayer configuration. Severe plastic deformation and chipping of cutting edge and nose, abrasive nose and flank wear along with formation of built-up-layer (BUL) were identified as possible mechanisms of tool failure. PVD coated tool successfully restricted different modes of tool wear for the entire range of cutting speed. Superior performance can be attributed to the hardness and wear resistance properties, thermal stability due to presence of TiAlN phase and excellent toughness owing to PVD technique and multilayer architecture.  相似文献   

13.
This paper studies the impact of a special carbide tool design on the process viability of the face milling of hardened AISI D3 steel (with a hardness of 60 HRC), in terms of surface quality and tool life. Due to the advances in the manufacturing of PVD AlCrN tungsten carbide coated tools, it is possible to use them in the manufacturing of mould and die components. Experimental results show that surface roughness (Ra) values from 0.1 to 0.3 μm can be obtained in the workpiece with an acceptable level of tool life. These outcomes suggest that these tools are suitable for the finishing of hardened steel parts and can compete with other finishing processes. The tool performance is explained after a tool wear characterization, in which two wear zones were distinguished: the region along the cutting edge where the cutting angle (κ) is maximum (κmax) for a given depth of cut, and the zone where the cutting angle is minimum (κ?=?0) that generates the desired surface. An additional machining test run was made to plot the topography of the surface and to measure dimensional variations. Finally, for the parameters optimal selection, frequency histograms of Ra distribution were obtained establishing the relationship between key milling process parameters (Vc and fz), surface roughness and tool wear morphology.  相似文献   

14.
Coating is an important factor that affects cutting-tool performance. In particular, it directly affects surface quality and burr formation in the micro milling process. After the micromechanical machining process, surface quality is very hard to increase by a second process (grinding, etc.). In addition, in micromechanical machining, the cutting tool needs to have a good resistance to wear, owing to the fact that the cutting process is carried out at high speed. In this study, the machinability of Inconel 718 superalloy was investigated, using a Diamond Like Carbon (DLC) coated tool. The experimental tests were carried out in dry cutting conditions for different feed rates and depth of cuts. It was found that the dominant wear mechanism for all cutting parameters was identified to be abrasive and diffusive wear. Besides, a significantly Built Up Edge (BUE) formation was observed in uncoated tool. The results clearly show that DLC coating significantly decreased BUE. In addition, a smaller cutting force and better surface roughness were obtained with a DLC-coated tool. In conclusion, DLC coating can be used in micro milling of Inconel 718. It reduces the BUE and burr formation, improves surface roughness.  相似文献   

15.
Machining of aluminum and its alloy is very difficult due to the adhesion and diffusion of aluminum, thus the formation of built-up edge (BUE) on the surface. The BUE, which affects the surface integrity and tool life significantly, affects the service and performance of the workpiece. The minimization of BUE was carried out by selection of proper cutting speed, feed, depth of cut, and cutting tool material. This paper presents machining of rolled aluminum at cutting speeds of 336, 426, and 540 m/min, the feeds of 0.045, 0.06, and 0.09 mm/rev, and a constant depth of cut of 0.2 mm in dry condition. Five cutting tools WC SPUN grade, WC SPGN grade, WC + PVD (physical vapor deposition) TiN coating, WC + Ti (C, N) + Al2O3 PVD multilayer coatings, and PCD (polycrystalline diamond) were utilized for the experiments. The surface roughness produced, total flank wear, and cut chip thicknesses were measured. The characterization of the tool was carried out by a scanning electron microscope (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) pattern. The chip underface was analyzed for the study of chip deformation produced after machining. The results indicated that the PCD tool provides better results in terms of roughness, tool wear, and smoother chip underface. It provides promising results in all aspects.  相似文献   

16.
The aim of this work is to determine the influence of cutting edge radius on the specific cutting energy and surface finish in a mechanical machining process. This was achieved by assessing the direct electrical energy demand during side milling of aluminium AW6082-T6 alloy and AISI 1018 steel in a dry cutting environment using three different cutting tool inserts. The specific energy coefficient was evaluated as an index of the sustainable milling process. The surface finish of the machined parts was also investigated after machining. It was observed that machining with the 48.50-μm cutting edge radius insert resulted in lower specific cutting energy requirements when compared with the 68.50 and 98.72-μm cutting edge radii inserts, respectively. However, as the ratio of the undeformed chip thickness to cutting edge radius is less than 1, the surface roughness increases. The surface roughness values gradually decrease as the ratio of undeformed chip thickness to cutting edge radius (h/r e) tends to be 1 and at minimum surface roughness values when the ratio of h/r e equalled to 1. However, the surface roughness values increased as h/r e becomes higher than 1. This machining strategy further elucidates the black box and trade-offs of ploughing and rubbing characteristics of micro machining and optimization strategy for minimum energy and sustainable manufacture.  相似文献   

17.
钛合金零件高速铣削刀具磨损的试验研究   总被引:1,自引:0,他引:1  
吴欣  张柳  徐锋 《电子机械工程》2009,25(6):41-45,58
高速铣削钛合金时,由于切削区内的切削温度高,加剧了刀具的磨损。通过对钛合金TC4的高速铣削实验,得出带TiA lN涂层的硬质合金刀具切削钛合金TC4时的刀具磨损的变化规律和刀具耐用度公式。通过对刀具磨损特性的分析,研究结果主要是刀具表面层的粘结相Co在高温下丧失对WC颗粒的结合强度,磨损机理以高温下的粘结层撕裂磨损为主。  相似文献   

18.
One of the biggest challenges for mechanical micro/nano milling is the design and fabrication of high precision and high efficiency micro milling tools. Commercially available micro milling tools are either too expensive (around several hundred US dollars) or simply made from downsizing of macro milling tools, which is sometimes not appropriate for the specific micro/nano milling requirements. So the design and fabrication of custom micro milling tools are necessary. In this paper, a micro straight edge endmill (SEE) is designed. Static and dynamic FEM analyses have been done for the SEEs with different rake angles trying to identify their stiffness and natural frequencies. By wire electrical discharge machining (WEDM), the SEEs made of polycrystalline diamond (PCD) with three different rake angles have been fabricated. The evaluation milling on tungsten carbide (WC) and silicon wafer have processed on a nano milling center. Experimental results show the SEEs have a good ability to simultaneously micro/nano milling of both the side and bottom surfaces with submicron surface roughness, and the SEE has high accuracy for large aspect ratio thin wall machining. The milling experiments on silicon wafer have successfully demonstrated that ductile mode machining was achieved and the coolant played an important role in silicon wafer milling.  相似文献   

19.
This paper presents the results of an experimental investigation on the wear mechanisms of uncoated tungsten carbide (WC) and coated tools (single-layer (TiAlN) PVD, and triple-layer (TiCN/Al2O3/TiN) CVD) in oblique finish turning of Inconel 718. Tool wear rate and wear mechanisms were evaluated for cutting speeds, 50<V<100 m/min, and feed rates, 0.075<f<0.125 mm/rev, at a constant depth of cut of 0.25 mm. It was concluded that abrasive and adhesive wear were the most dominant wear mechanisms, controlling the deterioration and final failure of the WC tools. While the triple layer CVD coated tools exhibited the highest wear resistance at high cutting speeds and low feeds, uncoated tools outperformed the single and multi-layer coated tools in the low range of cutting speeds and intermediate feeds. The cutting tool with single-layer PVD coating outperformed the other tools at the medium cutting speed.  相似文献   

20.
This paper focused on optimizing the cutting conditions for the average surface roughness (Ra) obtained in machining of high-alloy white cast iron (Ni-Hard) at two different hardness levels (50 HRC and 62 HRC). Machining experiments were performed at the CNC lathe using ceramic and cubic boron nitride (CBN) cutting tools on Ni-Hard materials. Cutting speed, feed rate and depth of cut were chosen as the cutting parameters. Taguchi L18 orthogonal array was used to design of experiment. Optimal cutting conditions was determined using the signal-to-noise (S/N) ratio which was calculated for Ra according to the “the-smaller-the-better” approach. The effects of the cutting parameters and tool materials on surface roughness were evaluated by the analysis of variance. The statistical analysis indicated that the parameters that have the biggest effect on Ra for Ni-Hard materials with 50 HRC and 62 HRC are the cutting speed and feed rate, respectively. Additionally, the optimum cutting conditions for the materials with 50 HRC and 62 HRC was found at different levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号