首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Electrochemical degradation of methylene blue (MB) and rhodamine B (RhB) was studied at porous gold (PAu) electrode in presence of KCl as supporting electrolytes. PAu electrode with three-dimensional porous structure was prepared by paper-based method and used as working electrode. Based on the cyclic voltammetric test, the redox potential of of MB and RhB contained in KCl solution was found and the electrochemical degradation was conducted at fixed applied voltage. The direct oxidation of organic dyes involved using PAu and Pt electrodes, while the indirect electrolysis was mediated by active chlorine electro-generated from KCl solution. The results showed that PAu electrode with porous structure has high electrochemical activity with fast kinetics for the destruction of RhB (0.0448 min-1) and low energy consumption (0.315 kWh/m3), compared to smooth Au foil and reported others. In addition, the durability test for 10 serial degradation showed that PAu electrode has a good reproducibility and high adaptability for practical application.  相似文献   

2.
Porous gold (PAu) was prepared by a paper-based templating method and was used to investigate the effect of a roughness factor on the electrochemical reduction of 4-nitrophenol (4-NP). Bare and palladium-loaded PAu electrodes showed open porous structures and large surface areas, compared to the bulk Au electrode. Moreover, its backbone structure was adjustable with the intrinsic pore size of the filter paper. As compared to PAu and bulk Au electrodes, the Pd/PAu electrode showed high electrocatalytic activity and a rapid reduction rate in a 4-NP reduction test. The results for cyclic voltammetry and kinetic analysis revealed that intraparticle diffusion through a porous structure and an electrocatalytically-active surface area (i.e., a high roughness factor) are important factors contributing to the enhancement of the electrocatalytic performance of 4-NP reduction.  相似文献   

3.
Integrated three-electrode system module composed of a porous silicon (PS)-based sensing electrode, an Ag/AgCl thin film reference electrode (REtf), and a Pt thin film counter electrode (CE) was fabricated for monitoring urea level of artificially-prepared body fluid. After thermal evaporation of the 200 nm thick Ag on the Ti-underlayered planar p-type silicon (p-Si) substrate, the Ag Film was oxidized in a FeCl3 solution to obtain the Ag/AgCl REtf. Multi-layered REtf was clearly shown from results of the auger electron spectroscopy (AES) depth profile. The nernstian slope of the REtf also showed good reproducibility. The PS layer was formed by electrochemical anodization with applying constant current to the p-Si substrate in an ethanolic HF solution and the macro PS (2 μm diameter and 10 μm depth) was obtained. The electrochemical active area (Aea) of the PS-based Pt thin film electrode was determined from the cyclovoltammetric result of redox reactions of K3Fe(CN)6 on the electrode surface and compared with the Aea of the planar silicon (PLS)-based Pt film substrate. After electropolymerization of the conductive poly(3-methylthiophene) (P3MT) on the PS-based Pt thin film, urease (isoelectric point ≈ 4.1) molecules were electrostatically doped into the P3MT film by applying positive bias. Amperometric calibration curves for both PS- and PLS-based sensing electrodes were compared in the range of 0.1–125 mM urea concentrations and the cross-sectional scanning electron microscopy (SEM) image of the PS-based sensing electrode was also shown.  相似文献   

4.
The nanostructured Co/Co–Ni–Pt catalyst were synthesized by electrodeposition process and galvanic replacement reaction. The alloy prepared on a copper electrode (Cu/Co/Co–Ni–Zn) was dipped in platinum containing alkaline solution to produce a porous Cu/Co/Co–Ni–Pt catalyst. The catalyst was characterized by energy dispersive X-ray and scanning electron microscopy techniques and its electrocatalytic properties were evaluated using cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry techniques. The results showed that the Co/Co–Ni–Pt coatings are porous, and composed of discrete Pt nanoparticles with the crystallite size of about 66 nm. It was shown from cyclic voltammograms in alkaline solutions that the oxidation current of methanol on the nanostructured Cu/Co/Co–Ni–Pt electrode was much higher than that on flat platinum. Electrochemical impedance spectra on the Co/Co–Ni–Pt electrode reveal that the charge transfer resistance decreases with the increase of anodic potentials. All results show that the Co/Co–Ni–Pt catalysts can be potential anode catalysts for the direct methanol fuel cell.  相似文献   

5.
Two types of O2,Pt/YSZ electrode preparation (Pt/YSZ cermet and sputtered platinum film) have been characterized by SEM and by cyclic voltammetry and chronoamperometry at 450 °C in 20 kPa oxygen. Cyclic voltammetry on the cermet and on the as-sputtered non-porous film electrode evidenced the characteristics of the PtO x /Pt couple. The corresponding redox reaction occurs at the metal/electrolyte interface and it manifests itself by an anodic wave and one of more cathodic peaks in the voltammogram. Heat treatment of the sputtered electrode at 700 °C in oxygen atmosphere resulted in a porous structure by coalescence of the film. Cyclic voltammetry of the porous film electrode featured the characteristics of the O2/O2− couple, i.e. the redox reaction of gaseous oxygen occurring at the tpb. Chronoamperometry at anodic potentials showed similar features for both electrode preparations: an initial inhibition, a current peak and a slow activation, the latter being related to the phenomenon of electrochemical promotion of catalysis.  相似文献   

6.
This work describes the electrochemical behavior of zirconium hexacyanoferrate (ZrHCF) film immobilized on the surface of bimetallic Au–Pt inorganic–organic hybrid nanocomposite glassy carbon electrode and its electrocatalytic activity toward the oxidation of hydrazine. The electrode possesses a three-dimensional (3D) porous network nano architecture (NFs). The surface structure and composition of the sensor was characterized by scanning electron microscopy (SEM). Electrocatalytic oxidation of hydrazine on the surface of modified electrode was investigated with cyclic voltammetry and chronoamperometry methods and the results showed that the ZrHCF film displays excellent electrochemical catalytic activities toward hydrazine oxidation. The modified electrode indicated reproducible behavior and high level of stability during the electrochemical experiments.  相似文献   

7.
The existence and role of platinum oxide in the solid state electrode system Pt(O2)/yttria-stabilized zirconia is discussed. Covering and porous model-type Pt film electrodes on YSZ single crystals are investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and in situ scanning photoelectron microscopy. The formation of Pt oxide and its amount strongly depend on the experimental conditions, such as temperature, oxygen partial pressure, and oxygen flux towards the electrode during anodic polarization. Electrode activation and deactivation processes can be explained by formation and decomposition of Pt oxide, which is reducing or inhibiting the oxygen exchange rate.  相似文献   

8.
Platinum (Pt) catalytic electrode was developed by using carbon nanotube films (buckypaper) as supporting medium and electrodeposition method to deposit Pt catalyst. Buckypapers are free-standing thin films consisting of single-walled carbon nanotubes (SWNTs), multi-walled carbon nanotubes (MWNTs) and/or carbon nanofibers (CNFs) held together by van der Waals forces without any chemical binders. Special mixed buckypapers was developed by layered microstructures with a dense and high-conducting SWNT networks at the surface, as well as large porous structures of CNF networks as back supports. This unique microstructure can lead to improve Pt catalyst accessibility and mass exchange properties. Pt particles of about 6 nm were uniformly deposited in porous buckypapers. A promising electrochemical surface area of ∼40 m2/g was obtained from these electrodes. A Pt utilization as low as 0.28 gPt/kW was achieved for the cathode electrode at 80 °C. Pt utilization efficiency can be further improved by optimization of the electrodeposition condition in order to reduce the Pt particle size.  相似文献   

9.
运用热丝化学气相沉积(HFCVD)的方法制备了以多孔钛为基体的掺杂硼金刚石(porous Ti/BDD)薄膜电极,并测试了它的主要物理性质,SEM表明金刚石相生长良好并且能均匀地分布在基体表面和孔内,Raman光谱表明电极的金刚石相纯而且质量很高。采用循环伏安法研究了酸性条件下茜素红在多孔Ti/BDD电极上的电氧化行为。通过改变阳极电流密度、支持电解质Na2SO4的浓度来研究茜素红在多孔Ti/BDD电极上的电化学氧化降解的效果影响。结果表明:电流密度40 mA/cm2、支持电解质浓度0.5 mol/L为较理想的工艺参数,总电流效率达到30.2%。在相同条件下,发现多孔Ti/BDD薄膜电极氧化降解茜素红与平板Ti/BDD薄膜电极相比具有更高的电流效率。紫外可见光光谱证实了多孔Ti/BDD电极能够有效地电氧化降解茜素红。  相似文献   

10.
在ITO导电玻璃表面化学镀NiP合金薄膜,然后电化学沉积Pt纳米粒子,形成染料敏化太阳能电池Pt/NiP/ITO对电极。优化了化学镀NiP合金的工艺条件;研究了NiP的结构和铂载量对Pt/NiP/ITO电极形貌和催化活性的影响。采用原子力显微镜分析Pt/NiP/ITO电极的表面形貌;采用循环伏安法、电化学交流阻抗法表征其电化学性能;采用单体DSSC的光电流–电压曲线表征其光伏性能。测试结果表明,在ITO基体上化学镀NiP合金,提高了电极的导电性和光反射能力,改善了电极表面Pt粒子的分布,使电池的短路电流密度和光电转化效率分别提高了4%和11%。  相似文献   

11.
Platinum nanoparticles incorporated ZnO hybrid nanospheres (PtZONS) have been synthesized via electrodeposition which is easy to control over the size distribution range. The Pt nanoparticles in ZnO nanospheres have been identified with high-resolution transmission electron microscopy (HRTEM) and energy dispersive spectroscopy (EDS). Methanol sensing capabilities of the nanospheres have been investigated through electrochemical measurements. The electrochemical measurements prove that these nanospheres demonstrate the abilities to electrocatalyze the oxidation of methanol and substantially raise the response current. The sensitivity of the Nafion/PtZONS/glassy carbon modified electrode to methanol is 235.47 μA M−1 cm−2, which is much higher than that of a pure ZnO and Pt nanospheres modified electrodes. Furthermore, it has been revealed that the electrode exhibits a good anti-interference and long-term stability. Our investigation demonstrates that the Pt-ZnO nanospheres can be employed for various applications.  相似文献   

12.
Methodology for the electrochemical decomposition of bisphenol A is described. The electrochemical behaviour of bisphenol A at a Pt electrode was investigated by means of cyclic voltammetric techniques. The electrochemical oxidation of bisphenol A led to the deactivation of the electrode as a result of the deposition of an electropolymerized film. However the electrochemical decomposition of bisphenol A could be achieved by the use of a platinum coated titanium (Pt/Ti) electrode and a tin dioxide coated (SnO2/Ti) electrode. The electrolysis was carried out galvanostatically at a constant current of 0.3 A. The mineralization of bisphenol A was monitored by determining the amount of total organic carbon. Furthermore, the generation and nature of intermediates produced in the electrochemical reactions was investigated. Although large amounts of aliphatic acids were generated by electrolysis with the Pt/Ti anode, they were produced only to a small extent in at the SnO2/Ti anode. In the case of the SnO2/Ti anode, bisphenol A is rapidly oxidized to carbon dioxide and water, compared to the Pt/Ti anode.  相似文献   

13.
纳米TiO2-Pt修饰电极的制备、性能及应用   总被引:8,自引:1,他引:7  
采用电化学合成法和电沉积法制备高活性钛基纳米TiO2-Pt(Ti/nano-TiO2-Pt)修饰电极,通过循环伏安法研究并比较了钛基纳米TiO2膜电极、纯Pt电极、Ti/nano-TiO2-Pt电极在H2SO4溶液中的电化学行为以及Ti/nano-TiO2-Pt电极对Mn2+氧化为Mn3+的电催化性能.结果表明纳米TiO2-Pt修饰电极对Mn2+的电氧化有高催化活性.Mn2+氧化峰电位为1.28 V(vs SCE),比纯Pt电极负移0.12 V;析氧电位为1.40 V,比纯Pt电极高0.08 V.Ti/nano-TiO2-Pt修饰电极催化性能优于纯Pt电极和纳米TiO2膜电极,非均相电解氧化效率可达90%以上.电解得到的Mn3+可一步氧化甘油为甘油醛,收率为96%.  相似文献   

14.
A novel high-performance counter electrode for dye-sensitized solar cells   总被引:4,自引:0,他引:4  
A novel Pt counter electrode for dye-sensitized solar cells (DSC) was prepared by thermal decomposition of H2PtCl6 on NiP-plated glass substrate. The charge-transfer kinetic properties of the platinized NiP-plated glass electrode (Pt/NiP electrode) for triiodide reduction were studied by electrochemical impedance spectroscopy. Pt/NiP electrode has the advantage over the platinized FTO conducting glass electrode (Pt/FTO electrode) in increasing the light reflectance and reducing the sheet resistance leading to improve the light harvest efficiency and the fill factor of the dye-sensitized solar cells effectively. The photon-to-current efficiency and the overall conversion efficiency of DSC using Pt/NiP counter electrode is increased by 20% and 33%, respectively, compared to that of using Pt/FTO counter electrode. Examination of the anodic dissolution and the long-term test on the variation of charge-transfer resistance indicates the good stability of the Pt/NiP electrode in the electrolyte containing iodide/triiodide.  相似文献   

15.
应用静电纺丝法制备纳米纤维修饰电极,之后分别在空气和N2环境下煅烧制备Pd纳米粒子微阵列修饰的ITO电极,应用SEM对电极表面形貌进行了表征。应用循环伏安法对修饰电极的电化学行为进行研究,并与直径是25μm的Pt微电极进行了比对,结果证明,它们都具有微米电极的电化学行为,但修饰电极的信号值远高于单根Pt微电极,具有较高的信噪比和极低的检出限。  相似文献   

16.
A novel one-step approach to Pt nanopore electrode ensembles (NEEs) has been developed using an amphiphilic block copolymer [polystyrene-block-poly (acrylic acid)] self-assembly. This procedure is simple and fast, and requires only conventional, inexpensive electrochemical instrumentation. Electrochemical methods are used to characterize the Pt nanopore electrode ensembles prepared using this new procedure. And the capacitance and voltammetric characteristics for the NEEs have been examined. At lower scan rates, it remains the features of a single nanoelectrode, while at high scan rates the nanoelectrodes act independently. This is an important feature for vivo sensing and other electroanalytical applications.  相似文献   

17.
采用电化学原位红外光谱技术,研究了苯酚在Pt电极表面的电化学氧化机理。在0.1 mol/L Na2SO4溶液中,Pt电极上电化学氧化苯酚的反应电位为+0.9~1.0 V(vs SCE)、析氧电位为+1.3 V;电化学原位红外光谱结果表明,当电位<0.9 V时,苯酚氧化产物主要为苯二酚、醌及少量醇类物质;电位0.9~1.1 V时,苯环结构被破坏,氧化产物主要为酮、酸、醇和CO2;根据官能团吸收峰的变化,苯酚在Pt电极表面氧化经历如下途径:苯酚→苯二酚→苯醌→酮、醇、酸→CO2。同时研究了NH4+对苯酚在Pt电极表面的电氧化的影响,结果表明在低电位区(<0.9 V)对苯酚氧化构成竞争。  相似文献   

18.
应用电化学方法制备了Pt/PAn/GC电极,优化了苯胺在玻碳电极上的聚合条件,并对其进行了表征.结果表明,铂微粒在聚苯胺膜电极上具有很高的分散度,电极具有很大的比表面积,Pt/PAn/GC电极对甲醇电氧化的催化活性明显高于Pt/GC电极和Pt电极,在该电极上甲醇正向扫描和反向扫描时的氧化峰电流为58.68mA/cm2和50.00mA/cm2,为Pt/GC电极的1.6倍和1.7倍,为Pt电极的3.0倍和3.1倍,从而有效地提高了铂的催化活性,并得到在玻碳电极上聚合苯胺的最佳条件为扫描速度50mV/s,扫描上限1.2V.  相似文献   

19.
R. Zhou  R. Yue  F. Jiang  Y. Du  P. Yang  C. Wang  J. Xu 《Fuel Cells》2012,12(6):971-977
A Pt‐modified Au catalyst featured with novel layered structures and ultra‐low Pt loading has been designed and electrochemically fabricated on a glassy carbon (GC) electrode. SEM characterization suggests that as‐formed Pt/Au/GC electrode grows in a Stranski–Krastanov mode, resulting in a nearly ideal layered structure with Au at the inner layer and Pt at the outer layer. The electrocatalytic activity of the synthesized Pt/Au/GC electrode towards formic acid electrooxidation was studied, and comparative experiments with other modified electrodes (i.e., Pt/GC, Pt/Au, and Pt/Pt) were also conducted. As a result, the electrocatalytic activity of the outer‐layered Pt depends significantly on the intrinsic properties of the substrates. The prepared Pt/Au/GC electrode with Au nanoparticles modified GC as the substrate shows remarkable catalytic activity for the formic acid oxidation, much higher than that of its counterparts, Pt/GC, Pt/Au, and Pt/Pt electrodes. Additionally, the measured electrochemical impedance spectra indicate that the charge‐transfer resistance for formic acid electrooxidation on Pt/Au/GC electrode is smaller than that on other Pt modified electrodes.  相似文献   

20.
An optimum nanostructure and pore size of catalyst supports is very important in achieving high catalytic performances. In this instance, we evaluated the effects of various carbon nanostructures on the catalytic performances of carbon‐supported platinum (Pt/C) electrocatalysts experimentally and numerically. The Pt/C catalysts were prepared using a hybrid method involving the preparation of dense, hollow, and porous nanostructured carbon particle via aerosol spray pyrolysis followed by microwave‐assisted Pt deposition. Electrochemical characterization of the catalysts showed that the porous Pt/C catalyst gave the best performance; its electrochemical surface area was much higher, more than twice than those of hollow or dense Pt/C. The effects of pore size on electrocatalysis were also studied. The results showed the importance of a balance between mesopores and macropores for effective catalysis with a high charge transfer rate. A fluid flow model showed that good oxygen transport contributed to the catalytic activity. © 2015 American Institute of Chemical Engineers AIChE J, 62: 440–450, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号