首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Many important matrix proteins involved in bone remodeling contain separate domains that orient the protein on hydroxyapatite and interact with target cell receptors, respectively. We have designed two synthetic peptides that mimic the dual activities of these large, complex proteins by binding to calcium phosphate minerals and by engaging integrin-dependent signaling pathways in osteoblasts. The addition of either PGRGDS from osteopontin or PDGEA from collagen type I to the HAP-binding domain of statherin (N15 domain) did not alter its alpha-helical structure or diminish its affinity for hydroxyapatite. Immobilized N15-PGRGDS bound MC3T3-E1 osteoblasts predominantly via the alpha v beta 3 integrin and induced focal adhesion kinase (FAK) phosphorylation at comparable levels to immobilized osteopontin. Immobilized N15-PDGEA bound MC3T3-E1 osteoblasts predominantly through the alpha 2 beta 1 integrin and induced similar levels of FAK phosphorylation. Although both peptides induced FAK phosphorylation with similar time courses, only the N15-PDGEA peptide induced ERK1/2 phosphorylation, showing that these peptides are also capable of engaging integrin-specific signaling pathways. This peptide system can be used to study adhesion-dependent control of signaling in the context of the relevant biomineral surface and may also be useful in biomaterial and tissue engineering applications.  相似文献   

2.
The whole cell variant of the patch clamp technique was used to investigate the actions of two novel insect peptides on high voltage-activated Ca2+ currents in cultured dorsal root ganglion (DRG) neurones. The insect peptides (PMP-D2 and PMP-C) were isolated originally from insect brains and fat bodies, and have been found to have similar three-dimensional structures to the N-type Ca2+ channel inhibitor omega-conotoxin GVIA (omega-CgTx GVIA). High voltage-activated Ca2+ currents were activated from a holding potential of -90 mV by depolarizing step commands to 0 mV. Extracellular application of synthetic PMP-D2 or PMP-C (1 microM) attenuated high voltage-activated Ca2+ currents. The effects of PMP-C were strongly dependent on the frequency of current activation, but inhibition was apparent and reached a steady state after 20 steps when currents were evoked for 30 msec at 0.1 Hz. The actions of the two insect peptides overlapped both with each other and with omega-CgTx GVIA, suggesting that N-type Ca2+ current was predominantly sensitive to these peptides. Low voltage-activated T-type current and 1,4-dihydropyridine sensitive L-type Ca2+ currents were insensitive to 1 microM PMP-D2 and PMP-C, which indicates a degree of selectivity. The presence of a fucose group on PMP-C abolished the ability of this peptide to attenuate high voltage-activated Ca2+ currents, which may reflect a mechanism by which peptide function could be regulated in insects. The electrophysiological data are supported by studies on 45Ca2+ influx into rat cerebrocortical synaptosomes. Both PMP-D2 (10 microM), PMP-C (10 microM) and omega-CgTx GVIA (1 microM) attenuated a proportion of 45Ca2+ influx into the synaptosomes, but additive effects of these peptides were not observed. We conclude that these naturally occurring peptides obtained from invertebrate preparations have inhibitory effects on N-type Ca2+ channels. Although the peptides have related three-dimensional structures, they have distinct amino acid sequences and appear to have different mechanisms of action to produce inhibition of mammalian neuronal high voltage-activated Ca2+ channels.  相似文献   

3.
Structure-activity relationships for the binding of human alpha-calcitonin gene-related peptide 8-37 (halphaCGRP8-37) have been investigated at the CGRP receptors expressed by human SK-N-MC (neuroblastoma) and Col 29 (colonic epithelia) cells by radioligand binding assays and functional assays (halphaCGRP stimulation of adenylate cyclase). On SK-N-MC cells the potency order was halphaCGRP8-37 > halphaCGRP19-37 = AC187 > rat amylin8-37 > halpha[Tyr0]-CGRP28-37 (apparent pKBs of 7.49+/-0.25, 5.89+/-0.20, 6.18+/-0.19, 5.85+/-0.19 and 5.25+/-0.07). The SK-N-MC receptor appeared CGRP1-like. On Col 29 cells, only halphaCGRP8-37 of the above compounds was able to antagonize the actions of halphaCGRP (apparent pKB=6.48+/-0.28). Its receptor appeared CGRP2-like. halpha[Ala11,18]-CGRP8-37, where the amphipathic nature of the N-terminal alpha-helix has been reduced, bound to SK-N-MC cells a 100 fold less strongly than halphaCGRP8-37. On SK-N-MC cells, halphaCGRP8-18,28-37 (M433) and mastoparan-halphaCGRP28-37 (M432) had apparent pKBs of 6.64+/-0.16 and 6.42+/-0.26, suggesting that residues 19-27 play a minor role in binding. The physico-chemical properties of residues 8-18 may be more important than any specific side-chain interactions. M433 was almost as potent as halphaCGRP8-37 on Col 29 cells (apparent pKB=6.17+/-0.20). Other antagonists were inactive.  相似文献   

4.
Laminin-5 is an isoform of laminin that consists of alpha 3, beta 3, and gamma 2 chains and has potent cell adhesion- and cell migration-promoting activities. In this study, five subdomains in the COOH-terminal globular (G) domain of human laminin alpha 3 chain were individually expressed in Escherichia coli, and their biological activities were investigated. Recombinant G2, G4, and G5 domains promoted adhesion to plastic plates of HT1080 fibrosarcoma cells, A431 epidermoid carcinoma cells, and ECV304 vascular endothelial cells. For the cell adhesion activity, the G2 domain required a divalent cation and heat-sensitive conformation more strongly than G4 and G5. The cell adhesion to G2 but not G4 and G5 was effectively inhibited by an anti-integrin alpha 3 antibody. A cell adhesion sequence of 22 amino acids, alpha 3G2A, that was homologous to the integrin alpha 3 beta 1-binding sequence GD-6 of laminin alpha 1 chain was identified within the G2 structure. The cell adhesion to alpha 3G2A peptide was also inhibited by the anti-integrin alpha 3 antibody. The cell adhesion to G2, alpha 3G2A, G4, and G5 was strongly inhibited by heparin, but that to native laminin-5 was inhibited less effectively. Moreover, G5 potently stimulated chemotactic migration of rat liver epithelial cells in Boyden chambers, but G2 and G4 did not. These results indicate that the G domain of laminin alpha 3 contains multiple cell binding sites with different mechanisms and different functions. The G2 domain seems to recognize integrin alpha 3 beta 1, whereas G4 and G5 may interact with heparin-like molecules on cell surface.  相似文献   

5.
Combined electrophysiological and imaging techniques were used to study calcium currents (ICa) and their sites of origin at rod bipolar cells in rat retinal slices. We report here for the first time the successful whole-cell patch-clamp recording from presynaptic boutons that were compared with somatic recordings. TTX-resistant inward currents were elicited in response to depolarization. The kinetic and pharmacological properties of ICa were very similar for recordings obtained from the soma and the presynaptic terminals. ICa activated maximally between -30 and -20 mV was enhanced by Bay K 8644 and was blocked by isradipine and nifedipine. Peak amplitude and time to peak were -31.3 +/- 1.2 pA and 3.2 +/- 0.2 msec with somatic recordings (n = 54), whereas the corresponding values were -31.6 +/- 6.1 pA and 3.2 +/- 0.7 msec in recordings obtained directly from terminals (n = 6). ICa showed little inactivation during sustained depolarizations. No T-type ICa was observed with depolarizations from -90 mV. Concomitant with Ca2+ entry, depolarization induced the appearance of transient outward currents that resembled IPSCs and were blocked by GABA and glycine receptor antagonists, suggesting that they arise from activation of amacrine feedback synapses. Upon depolarization, intracellular Ca2+ ([Ca2+]i) rises were restricted to the presynaptic terminals with no somatic or axonal changes and were linearly dependent on pulse duration when using a low-affinity Ca2+ indicator. In cone bipolar cells, ICa inactivated markedly, and [Ca2+]i rises occurred in the axon, as well as in the presynaptic terminals.  相似文献   

6.
7.
We have previously shown that the extracellular matrix molecule tenascin-C inhibits fibronectin-mediated cell adhesion and neurite outgrowth by an interaction with a cellular RGD-independent receptor which interferes with the adhesion and neurite outgrowth promoting activities of the fibronectin receptor(s). Here we demonstrate that the inhibitory effect of tenascin-C on beta1integrin-dependent cell adhesion and neurite outgrowth is mediated by the interaction of the protein with membrane-associated disialogangliosides, which interferes with protein kinase C-related signaling pathways. First, in substratum mixtures with fibronectin, an RGD sequence-containing fragment of the molecule or synthetic peptide, tenascin-C inhibited cell adhesion and spreading by a disialoganglioside-dependent, sialidase-sensitive mechanism leading to an inhibition of protein kinase C. Second, the interaction of intact or trypsinized, i.e., cell surface glycoprotein-free, cells with immobilized tenascin-C was strongly inhibited by gangliosides or antibodies to gangliosides and tenascin-C. Third, preincubation of immobilized tenascin-C with soluble disialogangliosides resulted in a delayed cell detachment as a function of time. Similar to tenascin-C, immobilized antibody to GD2 (3F8) or sphingosine, a protein kinase C inhibitor, strongly inhibited RGD-dependent cell spreading. Finally, the degree of tenascin-C-induced inhibition of cell adhesion was proportional to the degree of disialoganglioside levels of expression by different cells suggesting the relevance of such mechanism in modulating integrin-mediated cell-matrix interactions during pattern formation or tumor progression.  相似文献   

8.
Glomerular vasodilatation in the early stages of type I diabetes mellitus apparently results from arteriolar insensitivity to vasoconstrictors. Since cytosolic free calcium ([Ca2+]i) is a major signaling mechanism for smooth muscle contraction, we studied whether growth of smooth muscle-like rat glomerular mesangial cells in media with high glucose concentration affects [Ca2+]i responses to vasoconstrictors. In cells grown for five days in 22 mM glucose, we observed blunted responsiveness to three structurally unrelated vasoconstrictors that elevate [Ca2+]i via a phospholipase C-dependent mechanism, angiotensin II, prostaglandin F2 alpha, and arginine vasopressin. Inhibition of [Ca2+]i responses was not due to an osmotic effect of high glucose, since it was not mimicked by hypertonic mannitol. While the size of intracellular Ca2+ pools was unaffected by elevated glucose, Na+/Ca2+ exchange was markedly inhibited, thus ruling out both impaired filling of Ca2+ stores and enhanced counter-regulatory mechanisms. Impaired myoinositol transport or intracellular sorbitol accumulation were not responsible for the effects of high glucose, since supplementation of media with myo-inositol or with the aldose reductase inhibitor. Alcon 1576, failed to reverse insensitivity to vasoconstrictors. On the other hand, down-regulation or pharmacological inhibition of protein kinase C completely reversed the effects of high glucose, thus indicating involvement of this signal transduction pathway. These data suggest a possible intracellular mechanism for the impaired vascular sensitivity underlying early renal hemodynamic changes in diabetes mellitus.  相似文献   

9.
10.
Aldose reductase (AR) is a member of the aldo-keto reductase superfamily. Due to its ability to catalyze the formation of sorbitol from glucose during hyperglycemic and hypertonic stress, the aldose-reducing property of AR has been accepted as its main physiological and pathological function. Nonetheless, AR is a poor catalyst for glucose reduction and displays active-site properties unexpected of a carbohydrate-binding protein. We, therefore, examined the catalytic properties of AR with a series of naturally occurring aldehydes, compatible in their hydrophobicity to the large apolar active site of the enzyme. Our results show that recombinant human AR is an efficient catalyst for the reduction of medium- to long-chain unbranched saturated and unsaturated aldehydes. The enzyme displayed selective preference for saturated aldehydes, such as hexanal, and unsaturated aldehydes, such as trans-2-octenal and nonenal as well as their 4-hydroxy derivatives. Short-chain aldehydes such as propanal and acrolein were reduced less efficiently. Branched derivatives of acrolein or its glutathione conjugate (GS-propanal) were, however, reduced with high efficiency. In the absence of NADPH, the alpha, beta unsaturated aldehydes caused covalent modification of the enzyme. On the basis of electrospray mass spectrometric analysis of the wild-type and site-directed mutants of AR (in which the solvent exposed cysteines were individually replaced with serine), the site of modification was identified to be the active-site residue, Cys 298. The unsaturated aldehydes, however, did not modify the enzyme bound to NADPH and did not inactivate the enzyme during catalysis. Modeling studies indicate that the large hydrophobic active site of AR can accommodate a large number of aldehydes without changes in the structure of the binding site or movement of side chains. High hydrophobicity due to long alkyl chains or apolar substituents appears to stabilize the interaction of the aldehyde substrates with the enzyme. Apparently, such hydrophobic interactions provide substrate selectivity and catalytic efficiency of the order achievable by hydrogen bonding. Since several of the aldehydes reduced by AR are either environmental and pharmacological pollutants or products of lipid peroxidation, the present studies provide the basis of future investigations on the role of AR in regulating aldehyde metabolism particularly under pathological states associated with oxidative stress and/or aldehyde toxicity.  相似文献   

11.
The mechanisms involved in the initiation and the propagation of intercellular calcium signaling (calcium waves) were studied in cultured rat astrocytes. The analysis of calcium waves, induced either by mechanical stimulation or by focal application of ionomycin, indicated that initiation was dependent on the presence of external calcium. In addition, pharmacological experiments indicate that intercellular propagation required PLC activation, integrity of IP3-sensitive internal calcium stores, and functional gap junctions. An extracellular action of ATP or glutamate and participation of voltage-dependent Ca2+ channels were tested by using enzymatic degradation, receptor antagonists, and channel blockers, respectively. Because neither the speed of propagation nor the extent of the calcium waves was affected by these treatments, these alternate mechanisms were excluded from playing a role in intercellular calcium signaling. Biochemical assays and focal applications of several agonists (methoxamine, carbachol, glutamate) of membrane receptors to neurotransmitters and peptides (endothelin 1) demonstrated that their ability to trigger regenerative calcium waves depended on phospholipase C activity and inositol phosphate production. Thus, in rat astrocytes, initiation and propagation of calcium waves involve a sequence of intra- and intercellular steps in which phospholipase C, inositol trisphosphate, internal calcium stores, and gap junction channels play a critical role. The identification of these different events allows us to determine several targets at which the level of long-range signaling in astrocytes may be controlled.  相似文献   

12.
BACKGROUND: Pituitary adenylate cyclase activating peptide (PACAP-38), a neuropeptide of the vasoactive intestinal peptide/secretin family, localizes to intrapancreatic neurons and stimulates exocrine secretion from the pancreas. PACAP-38 stimulates calcium signaling in the rat pancreatic cell line AR42J. The purpose of this study was to elucidate the mechanisms of PACAP-evoked calcium signaling in these cells. METHODS: Continuous measurements of intracellular calcium were taken by fluorescent digital microscopy with the dye fura-2. Mechanisms of PACAP-38-evoked calcium signals were determined by a panel of inhibitors. Inositol phosphates production in response to PACAP-38 was measured. The ability of PACAP-38 to stimulate amylase release was used to determine a relevant dose range for these studies. RESULTS: We have shown that (1) AR42J cells respond to PACAP-38 with biphasic increases in [Ca2+]i in a dose-dependent fashion; (2) PACAP-38 acts through phospholipase C to release inositol triphosphate (IP3)-sensitive Ca2+ stores with (3) a subsequent influx of extracellular Ca2+. CONCLUSIONS: PACAP-38 activates calcium signaling through phospholipase C at concentrations that stimulate amylase release in AR42J cells.  相似文献   

13.
RGD-containing proteins and peptides are known to bind to the platelet GPIIb/IIIa receptor and inhibit platelet aggregation. That a conformational component to the specificity exists is suggested by significantly lower activity of linear RGD analogs relative to closely related cyclic peptides and small proteins containing the RGD sequence. Recently, conformations for a suite of RGD containing cyclic peptides have been defined by NMR-based methods and, for one molecule, by X-ray diffraction. We report here the NMR-based conformational analysis of an additional cyclic peptide, cyclo(Pro-Arg-Gly-Asp-D-Pro-Gly), and compare the conformational variations in the suite of peptides and related analogs. Biological activity data for these peptides shows a preference of the platelet GPIIb/IIIa receptor for one conformation of the RGD sequence, but suggests its ability to bind a second, distinct conformation.  相似文献   

14.
During prolonged application of glutamate (20 min), patterns of increase in intracellular Ca2+ concentration ([Ca2+]i) were studied in HEK-293 cells expressing metabotropic glutamate receptor, mGluR1alpha or mGluR5a. Stimulation of mGluR1alpha induced an increase in [Ca2+]i that consisted of an initial transient peak with a subsequent steady plateau or an oscillatory increase in [Ca2+]i. The transient phase was largely attributed to Ca2+ mobilization from the intracellular Ca2+ stores, but the sustained phase was solely due to Ca2+ influx through the mGluR1alpha receptor-operated Ca2+ channel. Prolonged stimulation of mGluR5a continuously induced [Ca2+]i oscillations through mobilization of Ca2+ from the intracellular Ca2+ stores. Studies on mutant receptors of mGluR1alpha and mGluR5a revealed that the coupling mechanism in the sustained phase of Ca2+ response is determined by oscillatory/non-oscillatory patterns of the initial Ca2+ response but not by the receptor identity. In mGluR1alpha-expressing cells, activation of protein kinase C selectively desensitized the pathway for intracellular Ca2+ mobilization, but the mGluR1alpha-operated Ca2+ channel remained active. In mGluR5a-expressing cells, phosphorylation of mGluR5a by protein kinase C, which accounts for the mechanism of mGluR5a-controlled [Ca2+]i oscillations, might prevent desensitization and result in constant oscillatory mobilization of Ca2+ from intracellular Ca2+ stores. Our results provide a novel concept in which oscillatory/non-oscillatory mobilizations of Ca2+ induce different coupling mechanisms during prolonged stimulation of mGluRs.  相似文献   

15.
Deletion of the single gene for the Dictyostelium G protein beta-subunit blocks development at an early stage. We have now isolated temperature-sensitive alleles of Gbeta to investigate its role in later development. We show that Gbeta is directly required for adenylyl cyclase A activation and for morphogenetic signaling during the entire developmental program. Gbeta was also essential for induction of aggregative gene expression by cAMP pulses, a process that is mediated by serpentine cAMP receptors (cARs). However, Gbeta was not required for cAR-mediated induction of prespore genes and repression of stalk genes, and neither was Gbeta needed for induction of prestalk genes by the differentiation inducing factor (DIF). cAMP induction of prespore genes and repression of stalk genes is mediated by the protein kinase GSK-3. GSK-3 also determines cell-type specification in insects and vertebrates and is regulated by the wingless/wnt morphogens that are detected by serpentine fz receptors. The G protein-dependent and -independent modes of cAR-mediated signaling reported here may also exist for the wingless/wnt signaling pathways in higher organisms.  相似文献   

16.
Osteoclasts are multinuclear bone-resorbing cells which contain abundant mitochondria. Morphological studies have suggested that a correlation may exist between mitochondrial concentration and bone resorption by osteoclasts. However, investigation of mitochondrial transmembrane potential (delta psi) and volume has been hampered by the difficulty in obtaining a sufficient number of osteoclasts for assessing these characteristics by flow cytometric analysis. In this study, we have used confocal laser scanning microscopy after loading the cells with Rhodamine 123 and 10-nonyl Acridine Orange to record mitochondrial delta psi and volume, respectively, in isolated rat osteoclasts cultured on bovine bone slices. Optimal staining conditions were found to be 10 micrograms ml-1 for 40 min for Rhodamine, and 1 microM for 10 min for the 10-nonyl Acridine Orange derivative. Two osteoclast populations, whose shape seemed to reflect bone resorption and migratory functions, were identified depending on their shape and on the distribution of the two dye probes. 'Round-shaped' osteoclasts had significantly higher mitochondrial delta psi and volume in the apical regions than in the basolateral portions (p < 0.00001). In contrast, mitochondrial delta psi and volume in 'irregular-shaped' osteoclasts were rather evenly distributed in both these regions (p > 0.05). Our results indicate that there is an apical polarization of mitochondria in osteoclasts corresponding to the energy demands associated with bone resorption.  相似文献   

17.
Canine tracheal mucus was dissolved by a number of mucolytic agents, including disulfide bond reducing agents, hydrogen bond breaking agents, and chaotropic ions, and their effect on rheological properties was assessed. Sodium thiocyanate led to 85-100% dissolution with the maximum retention of elasticity. Thiocyanate exposure did not result in demonstrable alterations in the size or shape of the mucus glycoproteins. Sodium thiocyanate is therefore recommended as a suitable dispersing agent for physiochemical studies of glycoprotein secretions.  相似文献   

18.
Interleukin-10 (IL-10) limits inflammatory responses by inhibiting macrophage activation. In macrophages, IL-10 activates Stat1 and Stat3. We characterized IL-10 responses of the J774 mouse macrophage cell line, and of J774 cells expressing wild-type hIL-10R, mutant hIL-10R lacking two membrane-distal tyrosines involved in recruitment of Stat3 (hIL-10R-TyrFF), a truncated Stat3 (DeltaStat3) which acts as a dominant negative, or an inducibly active Stat3-gyraseB chimera (Stat3-GyrB). A neutralizing anti-mIL-10R monoclonal antibody was generated to block the function of endogenous mIL-10R. IL-10 inhibited proliferation of J774 cells and of normal bone marrow-derived macrophages, but not J774 cells expressing hIL-10RTyrFF. Dimerization of Stat3-GyrB by coumermycin mimicked the effect of IL-10, and expression of DeltaStat3 blocked the anti-proliferative activity of IL-10. For macrophage de-activation responses, hIL10R-TyrFF could not mediate inhibition of lipopolysaccharide-induced TNFalpha, IL-1beta or CD86 expression, while DeltaStat3 did not interfere detectably with these IL-10 responses. Thus signals mediating both anti-proliferative and macrophage de-activation responses to IL-10 require the two membrane-distal tyrosines of IL-10R, but Stat3 appears to function only in the anti-proliferative response.  相似文献   

19.
Human erythrocyte sugar transport is mediated by the integral membrane protein GLUT1 and is regulated by cytosolic ATP [Carruthers, A., and Helgerson, A. L. (1989) Biochemistry 28, 8337-8346]. This study asks the following questions. (1) Where is the GLUT1 ATP binding site? (2) Is ATP-GLUT1 interaction sufficient for sugar transport regulation? (3) Is ATP modulation of transport subject to metabolic control? GLUT1 residues 301-364 were identified as one element of the GLUT1 ATP binding domain by peptide mapping and N-terminal sequence analysis of proteolytic fragments of azidoATP-photolabeled GLUT1. Nucleotide binding and sugar transport experiments undertaken with dimeric and tetrameric forms of GLUT1 indicate that only tetrameric GLUT1 binds and is subject to modulation by ATP. Reconstitution experiments indicate that nucleotide and tetrameric GLUT1 are sufficient for ATP modulation of sugar transport. Feedback control of GLUT1 regulation by ATP was investigated by measuring sugar uptake into erythrocyte ghosts containing or lacking ATP and glycolytic intermediates. Only AMP and ADP modulate ATP regulation of transport. Reduced cytosolic pH inhibits ATP modulation of GLUT1-mediated 3OMG uptake and increases Kd(app) for ATP interaction with GLUT1. We conclude that tetrameric but not dimeric GLUT1 is subject to direct regulation by cytosolic ATP and that this regulation is antagonized by intracellular AMP and acidification.  相似文献   

20.
Three GPI-anchored proteins, aminopeptidase N, alkaline phosphatase and alkaline phosphodiesterase I were released from the midgut brush border membrane of Bombyx mori by phosphatidylinositol-specific phopholipase C and the aminopeptidase N was purified to a homogeneous state. N-terminus and 6 internal sequences, one of which possessed part of zinc-binding motif, showed homology with those from other species. The zinc content in purified aminopeptidase N was estimated as approximately 0.72 mol/mol of the protein and 1,10-phenanthroline completely inhibited the enzyme activity, suggesting zinc requirement for the activity. The aminopeptidase N activity was inhibited not only by probestin and actinonin, but also strongly depressed by amastatin, while leuhistin and bestatin were less inhibitory. These suggest that the active site of aminopeptidase N might be structurally different from those of mammals. Calcium and magnesium ions stimulated the aminopeptidase N activity, but copper ion was rather inhibitory. Zinc ion showed bi-modal effect on the activity, i.e., stimulatory at low concentration, but inhibitory at higher than 100 microM. This inhibition was completely restored by EDTA. These results suggest that the aminopeptidase N possesses two zinc ion-binding sites with high and low affinity as essential and inhibitory one, as well as some regulatory metal-binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号