首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with subspace method aided data-driven design of robust fault detection and isolation systems. The basic idea is to identify a primary form of residual generators directly from test data and then make use of performance indices to make uniform the design of different type robust residuals. Four algorithms are proposed to design fault detection, isolation and identification residual generators. Each of them can achieve robustness to unknown inputs and sensitivity to sensor or actuator faults. Their existence conditions and multi-fault identification problem are briefly analyzed as well and the application of the method proposed is illustrated by a simulation study on the vehicle lateral dynamic system.  相似文献   

2.
In this paper, a multivariate fault prognosis approach for continuous processes with hidden faults is proposed based on statistical process monitoring methods and multivariate time series prediction. It is assumed that the fault is a slowly time-varying autocorrelated process and can be completely reconstructed. Fault magnitude is estimated first via reconstruction, then predicted by a vector AR model with wavelet based denoising. Given the fault direction, a new index is proposed to detect the fault, which integrates fault detection and prognosis together. Case studies on a continuous stirred tank reactor and the Tennessee Eastman process demonstrate the effectiveness of the proposed approaches.  相似文献   

3.
This article outlines the formulation of a robust fault detection and isolation (FDI) scheme that can precisely detect and isolate simultaneous actuator and sensor faults for uncertain linear stochastic systems. The given robust fault detection scheme based on the discontinuous robust observer approach would be able to distinguish between model uncertainties and actuator failures and therefore eliminate the problem of false alarms. Since the proposed approach involves estimating sensor faults, it can also be used for sensor fault identification and the reconstruction of true outputs from faulty sensor outputs. Simulation results presented here validate the effectiveness of the proposed robust FDI system.  相似文献   

4.
针对工业过程中发生故障时异常变量的精确识别以及如何准确建立"故障–征兆"表的问题,本文提出了一种基于k近邻(k–NN)变量贡献分析和数据重构的异常变量精确识别方法.首先,将k–NN算法中各个采样时刻的统计距离指标细化,分解为每个变量的贡献并对其进行详细分析,分别从单变量和多变量异常角度进行方法的可行性验证,确定过程故障时异常变量具有较大的贡献值;其次,建立正常数据中每个变量的贡献模型用于对故障样本中的异常变量进行"一次"识别;随后提出基于k–NN理论的数据重构算法,并从重构原理方面进行分析,验证该方法具有一定的有效性.对于故障样本,根据变量贡献分析方法求取每个变量对距离指标的贡献,"一次"识别出故障发生时所对应的异常变量或征兆;进而通过数据重构理论对故障样本中异常变量值进行重构、检测和"二次"识别,直至辨识出过程中发生异常的所有变量,并得到故障与变量之间的关系,即"故障–征兆"表.  相似文献   

5.
This paper presents a new scheme for fault detection and isolation in a satellite system. The purpose of this paper is to develop detection, isolation and identification algorithms based on a cascade filter for both total and partial faults in a satellite attitude control system (ACS). The cascade filter consists of a decentralized Kalman filter (DKF) and a bank of interacting multiple model (IMM) filters. The cascade filter is utilized for detection and diagnosis of anticipated sensor and actuator faults in a satellite ACS. Other fault detection and isolation (FDI) schemes are compared with the proposed FDI scheme. The FDI procedure using a cascade filter was developed in three stages. In the first stage, two local filters and a master filter detect sensor faults. In the second stage, the FDI scheme checks sensor residuals to isolate sensor faults, and 11 Extended Kalman filters with actuator fault models detect wherever actuator faults occur. In the third stage of the FDI scheme, four filters identify the fault type, which is either a total or partial fault. An important feature of the proposed FDI scheme is that it can decrease fault isolation time and accomplish not only fault detection and isolation but also fault type identification using a scalar penalty in the conditional density function.  相似文献   

6.
姚林  张岩 《控制与决策》2021,36(4):801-807
质量相关故障检测技术是保障工业过程安全顺行和质量稳定的重要手段,是当前流程工业过程控制领域的研究热点.针对工业过程的非线性与动态特性及其质量相关故障的时变特性,提出一种基于自适应混合核典型变量分析(AMKCVA)的质量相关故障检测方法.该方法通过设计合理的混合核函数和自适应监测统计量,提升了工业过程质量相关故障的检测性...  相似文献   

7.
为了提高柔性负载抓握机器人的故障检测能力,提出基于神经网络技术的机器人并发故障自动诊断方法.运用高分辨的智能传感器信息识别技术,结合刚度和强度等机械结构特征分析,构建柔性负载抓握机器人的故障信息采集模型,采用变刚度原理,提取柔性负载抓握机器人的振荡信息特征,通过谱特征检测和动态信息融合进行柔性负载抓握机器人的故障信息的...  相似文献   

8.
k--最近邻(k--nearest neighbor, k--NN)是一种有效的基于数据驱动的故障检测方法, 该方法在工业过程监视方面已经得到了广泛的应用. 但在过程中存在故障时, 精确地寻找故障根源和识别故障变量是故障诊断的重要目标, 也是保证工业过程安全生产的重要任务. 本文在k--NN故障检测技术的基础上, 提出了一种加权的k--NN重构方法, 对使控制指标减小最大(maximize reduce index, MRI)的过程变量依次进行重构, 进而确定发生故障的传感器. 根据理论分析并结合数值仿真对提出的方法进行了验证, 数值仿真先从精度方面验证了该方法能够有效地对故障传感器数值进行重构, 然后验证了该方法不仅适用于单一传感器 故障诊断, 对于同时发生或者因变量相关性而传播的传感器故障也具有很好的效果. 最后, 该方法被成功应用于TE(Tennessee Eastman)化工过程.  相似文献   

9.
This paper deals with a new method of current and speed sensors faults detection isolation (FDI) and identification for a permanent magnet synchronous motor (PMSM) drives. A new state variable is introduced so that an augmented system can be constructed to treat PMSM sensor faults as actuator faults. This method uses the PMSM model and a bank of adaptive observers to generate residuals. The residuals results are used for sensor fault detection. A logic algorithm is built in such a way to isolate and identify the faulty sensor for a stator phase current fault after detecting the fault occurrence. Simulation results are presented to illustrate the functionality of theoretical developments. Experimental results with 1.1-kW PMSM have validated the effectiveness of the proposed FDI method. The experimental implementation is carried out on powerful dSpace DS1103 controller board based on the DSP TMS320F240.  相似文献   

10.
Traditional multivariate statistical process control methods such as principal component analysis are limited to Gaussian process data when they used for process monitoring. However, the deficiency is not due to the method itself, but lies in the monitoring statistic construction and its confidence limit determination. This paper proposed a distribution-free method, which employs the one-class SVM to construct new monitoring statistics. Thus two new statistics are developed separately in two subspaces of the PCA model: the principal component subspace and the residual subspace. When some fault has been detected, a novel fault reconstruction scheme is proposed. For fault identification, two new identification indices are constructed. The performance of the proposed method in fault detection, reconstruction and identification is evaluated through a case study of the Tennessee Eastman (TE) benchmark process.  相似文献   

11.
In this paper, we study the problem of state estimation and both actuator and sensor fault detection for Linear Polytopic Parameter-Varying (LPV) system. The contribution of this work consists on the design of a novel robust adaptive observer based on polyquadratic formulations with a new set of relaxation. An optimisation problem is given in term of Linear Matrix Inequalities (LMI) in order to guarantee the stability of the system and the asymptotic convergence of faults error. A comparative study is made to prove the efficiency of the proposed polyquadratic algorithms against the quadratic ones. The performances and effectiveness of the proposed methods are illustrated in a simulation example where constant and variable actuator and sensor faults were detected.  相似文献   

12.
13.
In modern industry, detecting incipient faults timely is of vital importance to prevent serious system performance deterioration and ensure optimal process operation. Recently, multivariate statistical process monitoring (MSPM) techniques have been extensively studied and widely applied to modern industrial systems. However, conventional fault detection indices utilized in statistical process monitoring are not sensitive to incipient faults with small magnitude. In this paper, by introducing two representative smoothing techniques, novel incipient fault detection strategies based on a generic fault detection index in MSPM are proposed. Fault detectability for each proposed strategy is analyzed. In addition, the effects of the smoothing parameters on fault detection, including advantages and disadvantages, are also investigated. Finally, case studies on a numerical example and two practical industrial processes are carried out to demonstrate the effectiveness of the proposed incipient fault detection strategies.  相似文献   

14.
In this paper, we discuss a new fault detection and identification approach based on a multiblock partial least squares (MBPLS) method to monitor a complex chemical process and to model a key process quality variable simultaneously. In multivariate statistical process monitoring using MBPLS, four kinds of monitoring statistics are discussed. In particular, new definitions of the block and variable contributions to T2 and Q statistics are proposed and derived in order to identify faults. Also, the relative contribution, which is the ratio of the contribution to the corresponding upper control limit, is considered to find process variables or blocks responsible for faults. As an application study, a large wastewater treatment process in a steel mill plant is monitored and the effluent chemical oxygen demand, which indicates the current process performance, is modeled based on the proposed MBPLS-based fault detection and diagnosis method.  相似文献   

15.
提出一种基于递归稀疏主成分分析(recursive sparse principal component analysis,RSPCA)的工业过程故障监测与诊断方法,可用于时变工业过程的自适应故障监测与诊断.通过引入弹性回归网,将主成分问题转化为Lasso与Ridge结合的凸优化问题,采用秩-1矩阵修正对协方差矩阵进行递归分解,递归更新稀疏载荷矩阵和监测统计量的过程控制限,以实现连续工业过程长时间自适应故障监测,对检测出来的故障通过贡献图法实现对故障的诊断.在田纳西-伊斯曼(TE)过程进行实验验证,结果表明,与传统的故障监测方法相比,所提出的方法有效降低了故障漏检率和误报率,且时间复杂度低,确保了故障监测的灵敏度和实时性.  相似文献   

16.
In practice, because of complex mechanism processes, such as heating process, volume heterogeneity, and various chemical reaction characteristics, there is a nonlinear relationship among variables in industrial systems. The nonlinearity brings some difficulties to process monitoring. In order to ensure that the process monitoring system can work normally in nonlinear production processes, the nonlinear relationship between variables ought to be considered. In this work, a new fault detection and isolation method based on kernel dictionary learning is presented. In detail, the linearly inseparable data is mapped to a high-dimensional space. Then, a new nonlinear dictionary learning method based on kernel method was proposed to learn the dictionary. After obtaining the dictionary, the control limit can be calculated from the training data according to the kernel density estimation (KDE) method. When new data arrive, they can be represented by the well-learned dictionary, and the kernel reconstruction error can be used as a classifier for process monitoring. As for the fault data, the iterative reconstruction based method is proposed for fault isolation. In order to evaluate the effectiveness of the proposed process monitoring method, some extensive experiments on a numerical simulation, the continuous stirred tank heater (CSTH) process, and a real industrial aluminum electrolysis process are conducted. The proposed method is compared with several state-of-the-art process monitoring methods and the experimental results show that the proposed method can provide satisfactory monitoring results, especially for some small faults, thus it is suitable for process monitoring of nonlinear industrial processes.  相似文献   

17.
Probabilistic models, including probabilistic principal component analysis (PPCA) and PPCA mixture models, have been successfully applied to statistical process monitoring. This paper reviews these two models and discusses some implementation issues that provide alternative perspective on their application to process monitoring. Then a probabilistic contribution analysis method, based on the concept of missing variable, is proposed to facilitate the diagnosis of the source behind the detected process faults. The contribution analysis technique is demonstrated through its application to both PPCA and PPCA mixture models for the monitoring of two industrial processes. The results suggest that the proposed method in conjunction with PPCA model can reduce the ambiguity with regard to identifying the process variables that contribute to process faults. More importantly it provides a fault identification approach for PPCA mixture model where conventional contribution analysis is not applicable.  相似文献   

18.
19.
In this paper a sensor fault detection and isolation procedure based on principal component analysis (PCA) is proposed to monitor an air quality monitoring network. The PCA model of the network is optimal with respect to a reconstruction error criterion. The sensor fault detection is carried out in various residual subspaces using a new detection index. For our application, this index improves the performance compared to classical detection index SPE. The reconstruction approach allows, on one hand, to isolate the faulty sensors and, on the other hand, to estimate the fault amplitudes.  相似文献   

20.
In metal cutting processes, an effective monitoring system, based on a suitably developed scheme or set of algorithms can maintain machine tools in good condition and delay the occurrence of tool wear. In this paper, an approach is developed for fault detection based on a distributed system. Firstly, identifying of sensor instrumentation system is responsible for the signal processing and the system fault information. Secondly, the sensor wireless networks are used to transmit the data (lower layer) to or receive the commands from the computer center (top layer). Thirdly, the computer center at the top layer will monitor the overall system and generate the alarm signals or the commands when the faults occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号