首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Today, increasing energy demand and human consumption are becoming increasingly important for the safe use, storage and transport of energy resources. Energy sources have been the target of increasing terrorism and wars since the 20th century. In the future, alternative energy sources, such as hydrogen energy, are expected to take the place of fossil energy resources. This means that ballistic threats will target these resources. In this study, for the first time in the literature, the ballistic behavior of Type 1 metallic pressurized hydrogen storage tanks made of the 6061 T6 aluminum and SS304 stainless steel alloys at the different thicknesses against 7.62 mm were investigated under usage pressure. For these alloys, the minimum safe wall thickness of the hydrogen tank is mathematically calculated using finite element analysis.  相似文献   

2.
Hydrogen is an energy carrier which can be utilized in many sectors like stationary and transportation energy with nearly zero emission. Hydrogen energy is more efficient when compared to other energy sources. Hydrogen can be a replacement for fossil fuels in future as it emits only water when it is burned. In this work a mathematical model of transfer of hydrogen between two tanks has been developed using MATLAB simulink software version 21. Flow of hydrogen inside the pipe is controlled by orifice and diameter of this orifice and pipe diameter itself has some impact on outcome parameters such as inlet temperature of pipe, outlet temperature of pipe, heat transfer from one tank to other tank and hydrogen gas flow rate. The influence of orifice diameter as well as initial pressures on outcome parameters of hydrogen gas transfer model has analyzed in this work. From the simulation results it is inferred that when one initial pressure kept constant and other initial pressure keep on varying, no change in inlet temperature, decrease in outlet temperature, increase in heat transfer and increase in gas flow rate were observed when orifice diameter increase in size from 2 cm then 4 cm and then 6 cm. The research work has significant guidance for safety and efficient way of transporting hydrogen through pipeline from one tank to other tank.  相似文献   

3.
Over the past years, hydrogen has been identified as the most promising carrier of clean energy. In a world that aims to replace fossil fuels to mitigate greenhouse emissions and address other environmental concerns, hydrogen generation technologies have become a main player in the energy mix. Since hydrogen is the main working medium in fuel cells and hydrogen-based energy storage systems, integrating these systems with other renewable energy systems is becoming very feasible. For example, the coupling of wind or solar systems hydrogen fuel cells as secondary energy sources is proven to enhance grid stability and secure the reliable energy supply for all times. The current demand for clean energy is unprecedented, and it seems that hydrogen can meet such demand only when produced and stored in large quantities. This paper presents an overview of the main hydrogen production and storage technologies, along with their challenges. They are presented to help identify technologies that have sufficient potential for large-scale energy applications that rely on hydrogen. Producing hydrogen from water and fossil fuels and storing it in underground formations are the best large-scale production and storage technologies. However, the local conditions of a specific region play a key role in determining the most suited production and storage methods, and there might be a need to combine multiple strategies together to allow a significant large-scale production and storage of hydrogen.  相似文献   

4.
Hydrogen can be a promising clean energy carrier for the replenishment of non-renewable fossil fuels. The set back of hydrogen as an alternative fuel is due to its difficulties in feasible storage and safety concerns. Current hydrogen adsorption technologies, such as cryo-compressed and liquefied storage, are costly for practical applications. Metal-organic frameworks (MOFs) are crystalline materials that have structural versatility, high porosity and surface area, which can adsorb hydrogen efficiently. Hydrogen is adsorbed by physisorption on the MOFs through weak van der Waals force of attraction which can be easily desorbed by applying suitable heat or pressure. The strategies to improve the MOFs surface area, hydrogen uptake capacities and parameters affecting them are studied. Hydrogen spill over mechanism is found to provide high-density storage when compared to other mechanisms. MOFs can be used as proton exchange membranes to convert the stored hydrogen into electricity and can be used as electrodes for the fuel cells. In this review, we addressed the key strategies that could improve hydrogen storage properties for utilizing hydrogen as fuel and opportunities for further growth to meet energy demands.  相似文献   

5.
Compressed hydrogen tanks are now widely used for onboard hydrogen storage in fuel cell vehicles (FCVs). However, because of the high storage pressure and the low thermal conductivity of carbon fibre reinforced polymer (CFRP), the emptying of such tanks during driving or emergency release can cause a significant temperature decrease and result in an in-tank gas temperature below the low safety temperature limit of ?40 °C even in warm weather. Once the gas temperature within the tank is lower than ?40 °C, the sealing elements at the boss of the tank may fail, and glass transition of the polymer liner of the type IV tank may occur; both can cause hydrogen leakage and severe safety problems. In this paper, the heat transfer correlations, thermodynamic analyses, computational fluid dynamics (CFD) simulations, experimental studies, and thermal management methods associated with the emptying process of compressed hydrogen tanks are comprehensively reviewed. Future research directions on this topic are suggested.  相似文献   

6.
The paper outlines the concept of energy carrier with a particular reference to hydrogen, in view of a more disseminated employment in the field of automotive applications. In particular hydrogen production is analyzed considering the actual state of the art and recent technologies applied in production from the primary sources (fossil fuels, renewable energies, and water electrolysis). Then the problem of hydrogen storage is considered both from technical and economical point of views. In particular, differences between physical and chemical storage are here considered with a particular glance to the most innovative technologies including carbon nanostructures. A review on the main problems in storage and transportation is then shown with a particular attention given to infrastructures costs that perhaps will address particular choices for the technologies of the next future. Automotive applications are called out, accounting the main current technologies and notes on fueling station for hydrogen fed vehicle. The discussion of hydrogen safety in automotive put in evidence the needs for sophisticated sensors, but a comparison with the safety of gasoline and fire risks, evidences that some common incertitudes on hydrogen usage should be overcome. Some other safety issues are introduced in the section of hydrogen transportation. An overview of costs related hydrogen production, storage and transportation is finally given. This aspect is of a capital importance for the future dissemination of the hydrogen energy carrier.  相似文献   

7.
Today, energy has become one of the most important concerns of developing countries. The use of non-renewable energy sources, as well as the production of pollution, has led to growing efforts to replace fossil fuels, which are the most important energy sources in the modern world. Hydrogen as a clean fuel has attracted a lot of attention in recent years. Various methods have been reported for the production and storage of hydrogen. According to their advantages and disadvantages, it can be said that electrochemical hydrogen storage method is superior to other methods in terms of cost, safety, and optimum condition. The electrochemical hydrogen storage is done in a variety of techniques, and in recent years, the chronopotentiometry method has become one of the most popular methods for scientists. In chronopotentiometry technique, several parameters such as the reference electrode, the counter electrode, the working electrode, electrolyte, and current density are important. In this review, we investigated the articles that have been done in this regard from 2000 to 2020. This review can help scientists to better understand the electrochemical hydrogen storage system.  相似文献   

8.
The paper addresses the reproducibility of the fire test in the United Nations “Global technical regulation on hydrogen and fuel cell vehicles” (GTR#13) and similar fire test protocols in other regulations, codes and standards (RCS). Currently, GTR#13 requires controlling the flame temperature beneath the tank. An original Ulster conjugate heat transfer numerical model was applied to carry out a study demonstrating the dependence of a fire resistance rating (FRR) of a composite hydrogen tank on a fire heat release rate (HRR). No thermally activated pressure relief device was used. The validation experiments conducted afterwards at Karlsruhe Institute of Technology (KIT) plus a former USA fire test have confirmed the Ulster's conclusion to control not only temperatures, yet the fire HRR. This will improve the GTR#13 fire test reproducibility in different laboratories worldwide. The numerically observed variations of FRR were confirmed by the unique experimental data of the authors' collaborators: FRR = 16–22 min for HRR = 79 kW, 7–8 min (HRR = 165 kW) – both tests were carried out at KIT with identical 36 L volume and 700 bar pressure tanks; and 6–7 min (HRR = 370 kW), though this test in USA was performed with a larger volume tank of 72.4 L and 350 bar. The data on pool fire test with significantly higher HRR, i.e. 4100 kW, and tank volume of 100 L and 700 bar pressure confirmed the “saturation” effect in the dependence of FRR on HRR at HRR above 350 kW. The results of the study underpin the suggested amendment to GTR#13 to improve the reproducibility of the fire test and perform tests with onboard storage tanks at HRR>350 kW.  相似文献   

9.
A comprehensive review of the hydrogen storage systems and investigations performed in search for development of fast refueling technology for fuel cell vehicles are presented. Nowadays, hydrogen is considered as a good and promising energy carrier and can be stored in gaseous, liquid or solid state. Among the three ways, high pressure (such as 35 MPa or 70 MPa) appears to be the most suitable method for transportation due to its technical simplicity, high reliability, high energy efficiency and affordability. However, the refueling of high pressure hydrogen can cause a rapid increase of inner temperature of the storage cylinder, which may result not only in a decrease of the state of charge (SOC) but also in damages to the tank walls and finally to safety problems. In this paper, the theoretical analysis, experiments and simulations on the factors related to the fast refueling, such as initial pressure, initial temperature, filling rate and ambient temperature, are reviewed and analyzed. Understanding the potential relationships between these parameters and the temperature rise may shed a light in developing novel controlling strategies and innovative routes for hydrogen tank fast filling.  相似文献   

10.
Compressed hydrogen storage is currently widely used in fuel cell vehicles due to its simplicity in tank structure and refueling process. For safety reason, the final gas temperature in the hydrogen tank during vehicle refueling must be maintained under a certain limit, e.g., 85 °C. Many experiments have been performed to find the relations between the final gas temperature in the hydrogen tank and refueling conditions. The analytical solution of the hydrogen temperature in the tank can be obtained from the simplified thermodynamic model of a compressed hydrogen storage tank, and it serves as function formula to fit experimental temperatures. From the analytical solution, the final hydrogen temperature can be expressed as a weighted average form of initial temperature, inflow temperature and ambient temperature inspired by the rule of mixtures. The weighted factors are related to other refueling parameters, such as initial mass, initial pressure, refueling time, refueling mass rate, average pressure ramp rate (APRR), final mass, final pressure, etc. The function formula coming from the analytical solution of the thermodynamic model is more meaningful physically and more efficient mathematically in fitting experimental temperatures. The simple uniform formula, inspired by the concept of the rule of mixture and its weighted factors obtained from the analytical solution of lumped parameter thermodynamics model, is representatively used to fit the experimental and simulated results in publication. Estimation of final hydrogen temperature from refueling parameters based on the rule of mixtures is simple and practical for controlling the maximum temperature and for ensuring hydrogen safety during fast filling process.  相似文献   

11.
Towards a sustainable energy supply is a clear direction for exploratory research in Shell. Examples of energy carriers, which should be delivered to the envisaged sustainable energy markets, are bio-fuels, produced from biomass residues, and hydrogen (or electricity), produced from renewable sources. In contrast to the readily available ancient sunlight stored in fossil fuels, the harvesting of incident sunlight will be intermittent, efficient electricity and hydrogen storage technologies need to be developed. Research to develop those energy chains is going on, but the actual transformation from current fossil fuel based to sustainable energy markets will take a considerable time. In the meantime the fossil fuel based energy markets have to be transformed to mitigate the impact of the use of fossil fuels. Some elements in this transformation are fuels for ultra-clean combustion (hydrocarbons and oxygenates), hydrogen from fossil fuels, fuels for processors for fuel cells, carbon sequestration.  相似文献   

12.
Hydrogen becomes one of the most clean energy sources. The major issues on hydrogen are lack of practical clean and high‐temperature processes and possible practical storage of clean hydrogen. An energy intensive of clean hydrogen storage via chemical and liquid fuel production route is the current demand. This article reviewed the most recent research for hydrogen (H2) production by using several methods, such as thermochemical process, thermal decomposition, biological approaches, electrolysis, and photocatalytic method. H2 storage types, including physical and chemical approaches, were also reviewed. The produced H2 was stored as valuable chemicals and fuels via CO2 hydrogenation reaction. Reactor designs are the illustrated number of design ranging from the fixed bed to the continuous stirred tank reactor. Catalyst type, catalytic system, and the related mechanism of CO2 hydrogenation reaction to form alcohol, alkanes, and carboxylic acid were also discussed in detail.  相似文献   

13.
14.
Vehicle fires may cause localized fires on on-board high-pressure hydrogen storage tanks. To verify the safety performance of such tanks under localized fire exposure, a localized fire test was proposed in the Global Technical Regulation for Hydrogen Fuel Cell Vehicles. However, practicality and validity of the proposed test still require further verification. In this paper, this new fire test was experimentally investigated using the type 3 tanks. Influences of hydrogen and air as the filling media were studied. A three-dimensional computational fluid dynamics model was developed to analyze the effects of filling pressure and localized fire exposure time on the activation of thermally-activated pressure relief device (TPRD). The experimental results showed that temperature distribution on the tank surface was uneven around the circumference. The rising temperature of internal hydrogen or air contributed little to TPRD activation. The simulation results indicated that TPRD activation time was slightly affected by the variations of the filling pressures, but it increased when the localized fire exposure time was extended.  相似文献   

15.
Hydrogen is widely accepted as a promising energy carrier replacing fossil fuels. In this context hydrogen storage is one of the critical challenges in realizing hydrogen economy which relies on hydrogen as the commercial fuel. Due to very low volumetric energy density of pure hydrogen, it is highly compressed as a gas phase or liquified at extremely low temperature. However, chemically combined state in other materials has advantages in terms of storage conditions and associated safety concerns.The present study focuses on a development of a hydrogen storage applicable to special fuel cell (FC) mobilities such as forklift but not limited to. We adopts a solid-state storage method using metal hydride composite prepared by processing La0.9Ce0.1Ni5 and extended natural graphite (ENG). The isothermal hydrogen absorption/desorption behavior of the composite is measured at 20–80 °C. The results suggest that around 10 bar is sufficient to store 1.2 wt% of hydrogen. A cylindrical reactor is manufactured and experiments are carried out with the fabricated hydrogen storage material by changing operation conditions. The results of satisfaction are obtained in terms of the amount of hydrogen storage (>83 standard liter) and the absorption time (~10 min) under relatively moderate conditions of temperature (~19 °C) and pressure (~11 bar).As for scaling-up, a reactor of 2.0 kWh is designed based on the experimental results. CFD analysis is performed based on the hottest operation conditions focusing on a cooling water flow. The flow pattern and the temperature distribution of the cooling water are expected to be adequate not deviating from the stable operating conditions. CFD would be further applied to optimize the incorporated modular reactors.  相似文献   

16.
The fact that fossil fuels, which supply a large amount of the energy need, are limited in the world and can be only found in certain regions, have led humankind to seek alternatives. In addition, the use of fossil fuels generates wastes detrimental to humans and nature, which has led this search to alternative, clean and renewable energy sources. The use of hydrogen, which is a clean energy source, in internal combustion engines is very important in terms of reducing emission values as well as providing an alternative to petroleum-derived fuels. This study presents a literature review on the effect of the hydrogen ratio and combustion chamber geometry on the engine performance and emissions in a compression-ignition engine operating in the hydrogen diesel bi-fuel mode. As a result of the study, it was concluded that the hydrogen energy ratio should be between 5 and 20% and the combustion chamber should be designed by considering the combustion characteristics. The main purpose of the study is to highlight the functionality of the use of hydrogen in dual fuel mode in compression ignition engines and to be a resource for researchers who will work on this subject.  相似文献   

17.
The demand for hydrogen will increase within the next decades mainly due to the necessity of producing clean and environmentally accepted fuels from fossil hydrocarbon resources of minor quality and from coal.The use of electrolytic hydrogen is limited by the economics of its production which is dominated by the cost of the electrical energy necessary for water splitting. The potential for cost reductions by the application of new electrolysis technologies is investigated and break-even electricity prices are calculated at which electrolytic hydrogen can compete with hydrogen produced from fossil fuels.Although in general electrolytic hydrogen production is not yet competitive, there are good prospects for advanced, highly efficient processes (e.g. the electrolysis of steam) to be developed within the next decades. Small and medium hydrogen production plants of this type might be competitive soon, and they are attractive if the oxygen by-product and the environmental advantages are taken into account.  相似文献   

18.
几种汽车替代燃料的技术经济比较   总被引:12,自引:0,他引:12  
随着世界经济的发展和人们物质生活水平的不断提高,世界各国对能源的需求量不断增加。能源问题成为世界各国最关心的问题之一,寻找新的替代能源势在必行,分析了目前世界对一次能源,特别是石油的需求增长情况,指出了能源使用中存在的一些问题,并针对汽车燃料的使用情况,从物理化学性质,能量特点,排放特点及经济性几个方面比较了几种汽车替代能源,通过比较发现在几种替代燃料中,氢能的综合经济效益最高,但目前在生长、储运及加载的成本等方面还存在一些问题,尚不能大规模投入使用。在这样的情况下,甲醇是比较合适的汽车替代燃料。  相似文献   

19.
Hydrogen gas is increasingly studied as a potential replacement for fossil fuels because fossil fuel supplies are depleting rapidly and the devastating environmental impacts of their use can no longer be ignored. H2 is a promising replacement energy storage molecule because it has the highest energy density of all common fuels by weight. One area in which replacing fossil fuels will have a large impact is in automobiles, which currently operate almost exclusively on gasoline. Due to the size and weight constraints in vehicles, on board hydrogen must be stored in a small, lightweight system. This is particularly challenging for hydrogen because it has the lowest energy density of common fuels by volume. Therefore, a lot of research is invested in finding a compact, safe, reliable, inexpensive and energy efficient method of H2 storage. Mechanical compression as well as storage in chemical hydrides and absorption to carbon substrates has been investigated. An overview of all systems including the current research and potential benefits and issue are provided in the present paper.  相似文献   

20.
With the increasing population of the world, the need for energy resources is increasing rapidly due to the development of the industry. 88% of the world's energy needs are met from fossil fuels. Since there is a decrease in fossil fuel reserves and the fact that these fuels cause environmental pollution, there is an increase in the number of studies aimed to develop alternative energy sources nowadays. Hydrogen is considered to be a very important alternative energy source due to its some specific properties such as being abundant in nature, high calorific value and producing only water as waste when burned. An important problem with the use of hydrogen as an energy source is its safe storage. Therefore, method development is extremely important for efficient and safe storage of hydrogen. Surface area, surface characteristics and pore size distribution are important parameters in determining the adsorption capacity, and it is needed to develop new adsorbents with optimum parameters providing high hydrogen adsorption capacity. Until recently, several porous adsorbents have been investigated extensively for hydrogen storage. In this study, it was aimed to develop and compare novel Pd/carbon, Pd/multiwalled carbon nanotube, and Pd/graphene composites for hydrogen sorption. All the palladium/carbon composites were characterized by t-plot, BJH desorption pore size distributions, N2 adsorption/desorption isotherms, and SEM techniques. The maximum hydrogen storage of 2.25 wt.% at −196 °C was achieved for Pd/KAC composite sample. It has been observed that the spillover effect of palladium increases the hydrogen sorption capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号