首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
分析了低噪声放大器的设计方法,介绍了一种用网络匹配法和Asoft公司的Designer软件包并通过晶体管模型来设计低噪声放大器的具体方法。该方法设计的低噪声放大器带宽为1.5GHz,增益为23.2dB且在带宽内性能十分稳定。  相似文献   

2.
设计了一种采用BiFET结构的低噪声放大器(LNA),这种结构通过BiCMOS工艺使低噪声放大电路集合了双极型晶体管的低噪声特性和CMOS晶体管的高线性度。应用优化的BiFET Cascode共源共栅结构能够明显地提高低噪声放大器的性能,并且能应用于两个不同频率。本文设计的低噪声放大器在低偏置电流(1.7mA)和低功耗(5.7mW)的情况下能取得1.69dB的噪声系数、15.96dB的电压增益、一8.5dBm的IIP3和-67dB的反向隔离。设计的BiFET低噪声放大器是采用了AMS0.8μm的BiCMOS混合信号工艺,经过优化可以用于工业、室内的远程无线控制系统包括无线门禁系统。  相似文献   

3.
微波低噪声放大器的设计与仿真   总被引:2,自引:2,他引:0  
常建刚 《通信技术》2009,42(1):128-130
低噪声放大器在接收系统中能降低系统的噪声和接收机灵敏度,是接收系统的关键部件。文中按照低噪声放大器电路的设计要求,完成了2GHz基站前端射频低噪声放大器的电路设计,并通过ADS仿真软件对电路进行仿真和优化。最终表明,采用本方案设计的LNA增益约为15dB,噪声系数约为1.2dB,性能稳定,完全达到了通信接收机中对LNA指标的要求。  相似文献   

4.
针对单片雷达接收机中对低噪声放大器(LNA)的要求,采用CMOS0.18m工艺设计了三级级联的镜像抑制低噪声放大器。通过在低噪声放大器中接入陷波滤波器,实现对镜像信号的衰减,从而减小了后端混频器电路的设计难度。在ADS中对放大器进行仿真,结果表明:在最大供电电压为5V、信号频段为3.0~3.2GHz时,中频输出225MHz,功率增益31dB,噪声系数(NF)0.5dB,输入输出1—dB点的功率分别为-19.5和11.5dBm,对镜像信号的抑制度达22dB。  相似文献   

5.
针对单片雷达接收机中对低噪声放大器(LNA)的要求,采用CMOS0.18,um工艺设计了一个三级级联的镜像抑制低噪声放大器。通过在低噪声放大器中接入限波滤波器,实现对镜像信号的衰减,从而减小了后端混频器电路的设计难度。在ADS中对设计的放大器仿真,其结果为:最大供电电压为5V情况下,信号频段为3.0~3.2GHz,中频输出为225MHz,功率增益≥31dB,噪声系数(FN)≤O.5dB,1dB点的输入/输出功率分别为-19.5dBm和11.5dBm,对镜像信号的抑制度达22dB。  相似文献   

6.
级联型低噪声放大器设计和优化的研究   总被引:1,自引:0,他引:1  
文章详细分析了共源共栅级联型低噪声放大器的优化设计方法。文章首先简要的介绍共源共栅MOSFET低噪声放大器优化设计步骤。在此基础上,通过分析整个级联型低噪声放大器的密勒效应对优化设计的影响,进一步提出了对共栅级MOSFET的沟道宽度优化的必要性。最后,文章以一个工作于2.4GHz,0.5gm工艺的低噪声放大器设计为例,证实了前面理论分析的正确性,并根据低噪声放大器的主要设计指标给出了共源共栅结构下共栅级MOSFET的沟道宽度的优化方法。  相似文献   

7.
本文给出了一个利用中芯国际0.18μm CMOS工艺设计的用于蓝牙应用的单片低噪声放大器。放大器采用片内集成的螺旋电感实现单片集成的低噪声放大。在1.8V伏电源下,工作电流为2mA,在频率2.4GHz下功率增益大于10dB,输入反射小于-20dB。  相似文献   

8.
介绍了一种基于ADS的C波段低噪声放大器的设计,同时分析了射频微波低噪声放大器的整体框图、主要指标以及具体的电路设计方法。低噪声放大器是无线通信接收机中的主要组成部分,低噪声放大器指标的好坏直接影响整个接收机的工作状况。该放大器采用射频场效应管ATF-36077作为主要放大器件,同时利用微带线设计了外围匹配电路,利用ADS强大的射频仿真与优化功能,最终实现了一个性能优良的C波段低噪声放大器。最后设计的放大器在3.7GHz4.2GHz增益为11dB,噪声系数为0.6dB,输入输出驻波比小于1.5。  相似文献   

9.
基于ADS的平衡式低噪声放大器设计   总被引:1,自引:0,他引:1  
平衡放大技术有着驻波特性好,增益高、易级联的优点。本文将平衡放大技术应用到低噪声放大器的设计中,在保证低噪声和功率增益的同时,用以提高低噪声放大器的驻波比和增益平坦度。ADS仿真结果表明,在5.3-6.3 GHz的频带范围内,低噪声放大器绝对稳定,噪声系数≤1.182 dB,功率增益达到10 dB,并且通过采用平衡放大技术,输入输出驻波比≤1.3∶1,带内波动≤1dB,提高了低噪声放大器的有效工作带宽。  相似文献   

10.
本文给出了利用0.18umCMOS工艺设计的5.2GHz低噪声放大器。在1.8V电压下,工作电流为24mA增益为15.8dB噪声系数为1.4dB.  相似文献   

11.
采用两级宽带单片集成放大器(MMIC)级联,并用微带功率均衡器对放大器的平坦度进行修正。最终实现的Ka波段全频段低噪声放大器的性能——频率范围:26.5—40GHz,增益:30dB,增益平坦度:〈5dB,噪声:≤4.5dB,输入输出端1:2驻波:≤2.2,1dB压缩点功率〉7dBm。  相似文献   

12.
11GHz低噪声放大器的研制   总被引:1,自引:0,他引:1  
本文阐述了微波低噪声放大器的高原原理,并应用微波EESOF设计软件以10.7-11.7GHz频段上完成G≥21dB,NFF≤3.0dB的低噪声放大器的设计与制作。  相似文献   

13.
采用场效应晶体管ATF541M4设计了一个工作于LTE第38频段(2570MHz-2620MHz)的低噪声放大器。首先介绍设计低噪声放大器的理论基础,其次在ADS中进行仿真,最后将仿真结果与实测结果进行对比,得出结论。实测结果表明,该低噪声放大器在指定频率范围内噪声系数小于ldB,增益大于13dB,带内波动小于±0.25dB。  相似文献   

14.
研究了封装以及ESD保护电路对低噪声放大器的性能影响。通过详尽推导电感负反馈共发射极低噪声放大器的输入阻抗、跨导、电压增益以及噪声系数的表达式,讨论并设计了一个应用于超高频接收芯片的低噪声放大器。芯片采用低成本的0.8μm BiCMOS工艺实现,封装形式为SOIC28。经过测量,所得到的参数与讨论及仿真值很好吻合,验证了设计以及优化方法的正确性。  相似文献   

15.
介绍了采用锗硅技术的低噪声放大器的基本理论,给出了一个2GHz低噪声放大器的例子,并总结了近来采用锗硅技术的各种频段的低噪声放大器研究情况.最后,介绍了锗硅技术的广阔应用前景.  相似文献   

16.
为了降低接收系统中微波放大器的噪声,提高接收机灵敏度,文中介绍了微波低噪声放大器的技术指标和设计方法。并利用ADS软件对微波低噪声放大器的设计进行了优化和仿真。最后使微波低噪声放大器的设计结果达到了设计期望值。  相似文献   

17.
低噪声放大器(LNA,Low Noise Amplifier)能有效放大射频小信号,降低系统的总体噪声,提高接收机的灵敏度。该文介绍了低噪声放大器的主要性能指标和设计方法,该电路选用ATF-54143晶体管,采用两级放大,利用Agilent ADS软件完成一个S波段低噪声放大器的偏置电路以及输入、级间和输m匹配的设计和仿真。本设计中,在源极加入短路微带线形成反馈作用,从而提高稳定性。最后对仿真完的电路进行了加丁测试。经测试,在2.15-2.65GHz的频带内,获得了27-2-28.1dB的增益,增益平坦度小于±0.9dB,噪声系数小于ldB,输入电压驻波比为l.048-1.640,输出电压驻波比为1.120-1.840,在中心频率点2.4GHz上.输出功率ldB压缩点为162dBm。  相似文献   

18.
本文首先介绍了低噪声放大器的设计方法以及采用源极串联负反馈提高晶体管稳定性的原理,然后使用该方法设计了一个L波段低噪声放大器。仿真结果表明该放大器的噪声系数小于1dB,增益大于30dB。  相似文献   

19.
为了提高L波段气象探空雷达中射频前端的稳定性,采用ATF54143晶体管设计了一种平衡式结构的低噪声放大器。通过使用ADS软件对该低噪声放大器进行了优化、仿真,并进行了实物加工。实物测试表明,该低噪声放大器带内增益大于15dB,噪声系数小于1dB,稳定性系数大于1。  相似文献   

20.
南京电子器件研究所最近利用76mmGaAsMMIC工艺线研制出数种单片电路。封面照片为S波段低噪声放大器与混频器单胞及大圆片照片,初步微波性能如下:放大器:增益>22dB;噪声系数<1.5dB;输入输出驻波<1.5混频器:变频增益>4dB;各端口驻波<1.5;各端口隔离度>24dB电源:±5VS波段单片低噪声放大器与混频器  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号