首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Surface acoustic wave (SAW) propagation characteristics have been studied using modeling calculations for a potassium niobate (KNbO/sub 3/) thin film-layered structure with [001] and [110] orientation on a single crystal spinel (MgAl/sub 2/O/sub 4/) substrate, and a spinel buffer layer on silicon. Variation in the electromechanical coupling and acoustic attenuation has been compared. A significantly high value of coupling factor (k/sub max//sup 2/=23%) is obtained for the [001]KNbO/sub 3//spinel structure by introducing an optimum thickness of spinel over-layer for potential wide bandwidth SAW device applications. The dispersion characteristics with the [110] KNbO/sub 3/ orientation indicate an initial peak in the coupling coefficient value (k/sub max//sup 2/=8.8%) at a relatively low KNbO/sub 3/ film thickness that appears attractive for fabricating devices with thinner films. The KNbO/sub 3/ film with [001] orientation is found attractive for efficient acousto-optic (AO) device application with the formation of a symmetric waveguide structure (spinel(0.5 /spl mu/m)/KNbO/sub 3/(1.0 /spl mu/m)/spinel). A high value of k/sup 2/=23.5% with 50% diffraction efficiency has been obtained for the spinel(0.5 /spl mu/m)/KNbO/sub 3/(1.0 /spl mu/m)/spinel structure at 1 GHz SAW frequency and 633 nm optical wavelength at a very low input drive power of 15.4 mW.  相似文献   

2.
Pure SH-SAW propagation, transduction and measurements on KNbO3   总被引:1,自引:0,他引:1  
Potassium niobate (KNbO3) supports the electromechanically active pure shear horizontal surface acoustic wave (SH-SAW) mode along Z-axis cylinder orientations, Euler angles (phi, 90 degrees, 0 degrees), in which two uncoupled wave solutions exist: a purely mechanical sagittal Rayleigh SAW and a piezoelectrically stiffened pure SH-SAW. Within this family of cuts, a maximum electromechanical coupling coefficient for the pure SH-SAW, K2 = 53%, is observed along (0 degrees, 90 degrees, 0 degrees). This pure SH-SAW orientation also has the maximum value of electromechanical coupling observed along rotated Y-cut X propagation directions, Euler angles (0 degrees, theta, 0 degrees). The use of the pure SH-SAW mode is attractive for liquid-sensing applications because the SH-SAW is modestly attenuated by the adjacent liquid, unlike the generalized SAW (GSAW), which has particle displacement normal to the surface. This work investigates propagation and excitation properties of the SH-SAW and the shear horizontal bulk acoustic wave (SH-BAW) on single crystal KNbO3, Euler angles (0 degrees, 90 degrees, 0 degrees). Interdigital transducer (IDT) arrays are analyzed using boundary element method (BEM) techniques, addressing IDT properties such as: power partitioning between the SH-SAW and SH-BAW, SH-BAW radiation as a function of wave vector direction and radiation angle, and overall IDT impedance. The percentage of SH-SAW power to total input power is above 98% for IDTs containing 1.5 to 5.5 wavelengths of active electrodes with surrounding metalized regions. For nonmetalized regions outside the IDT, the ratio drops to between 1 and 2%, showing the importance of an energy trapping structure for efficient SH-SAW excitation and propagation along this orientation. Simulated and experimental IDT admittance results are compared, verifying the validity of the analysis performed. The reported measurements on the frequency variation with temperature indicate that the orientation considered is temperature compensated at about 8 degrees C. The surface of the SH-SAW devices fabricated have been loaded with deionized water and showed additional 1.6 dB transmission loss with respect to the unloaded surface, verifying the suitability of the pure SH-SAW mode on KNbO3 for liquid sensor applications.  相似文献   

3.
In this paper, the perturbation method is used to study the velocity shift of surface acoustic waves (SAW) caused by surface pressure and temperature variations of piezoelectric substrates. Effects of pressures and temperatures on elastic, piezoelectric, and dielectric constants of piezoelectric substrates are fully considered as well as the initial stresses and boundary conditions. First, frequency pressure/temperature coefficients are introduced to reflect the relationship between the SAW resonant frequency and the pressure/temperature of the piezoelectric substrates. Second, delay pressure/temperature coefficients are introduced to reflect the relationship among the SAW delay time/phase and SAW delay line-based sensors' pressure and temperature. An objective function for performance evaluation of piezoelectric substrates is then defined in terms of their effective SAW coupling coefficients, power flow angles (PFA), acoustic propagation losses, and pressure and temperature coefficients. Finally, optimal selections of piezo-electric substrates and crystal cuts for SAW-based pressure, temperature, and pressure/temperature sensors are derived by calculating the corresponding objective function values among the range of X-cut, Y-cut, Z-cut, and rotated Y-cut quartz, lithium niobate, and lithium tantalate crystals in different propagation directions.  相似文献   

4.
This paper discusses side acoustic radiation in leaky surface acoustic wave (LSAW) resonators on rotated Y-cut lithium tantalite substrates. The mechanism behind side radiation, which causes a large insertion loss, is analyzed by using the scalar potential theory. This analysis reveals that side radiation occurs when the guiding condition is not satisfied, and the LSAW most strongly radiates at the frequency in which the LSAW velocities in the grating and busbar regions approximately correspond to each other. Based on these results, we propose a "narrow finger structure," which satisfies the guiding condition and drastically suppresses the side radiation. Experiments show that the resonance Q of the proposed structure drastically improves to over 1000 by suppressing the side radiation, which is three times higher than for a conventional structure. Applying the proposed resonators to the ladder-type SAW filters, ultra-low-loss and steep cut-off characteristics are achieved in the range of 800 MHz and 1.9 GHz.  相似文献   

5.
Surface acoustic wave (SAW) resonators on lithium tantalate (LiTaO3) and lithium niobate (LiNbO3) are investigated. The amplitude of the acoustic fields in the resonators are measured using a scanning laser interferometer. The amplitude profiles of the surface vibrations reveal the presence of distinct acoustic beams radiated from the transducer region of the SAW resonators and propagating with low attenuation. We suggest that this radiation is generated by the charges accumulating at the tips of the finger electrodes. The periodic system of sources, namely oscillating charges at the fingertips, generates Rayleigh-wave beams in the perpendicular and oblique directions. Green's function theory is used to calculate the coupling strength and slowness of the Rayleigh waves on 42 degrees Y-cut LiTaO3 and Y-cut LiNbO3 substrates as a function of the propagation direction. Furthermore, the propagation angles of the Rayleigh-wave beams as a function of frequency are calculated. The computed angles are compared with the measured ones for both the LiTaO3 and LiNbO3 substrates.  相似文献   

6.
7.
Experimental measurements are reported on voltage-controlled acoustic time-delay lines operating at 1 GHz in the nearly pure shear-horizontal (S-H) mode in 38 degrees rotated Y-cut LiNbO(3). The high-acoustic velocity (4800 m/s) in conjunction with the large electroacoustic effect exhibited by this orientation allows high-frequency operation and optimum time-delay tuning sensitivity with a planar, single surface, device geometry. The authors demonstrate fractional time delay of 0.3x10(-6) V(-1 ) for surface electrodes that produce an in-plane E-field. However, the simultaneous excitation and propagation of both a leaky surface-acoustic wave (LSAW) and surface skimming bulk wave (SSBW), both as (nearly pure) S-H waves in these devices, seriously restricts the extent to which it is possible to maximize the time delay modulation sensitivity by reducing electrode gap spacing as done in similar SAW devices. The LSAW and surface-skimming body wave (SSBW) propagate at nearly the same velocity on a free surface, and perturbation of their velocity and relative attenuation rates by surface electrodes causes pronounced interference effects between the two modes for some device geometries.  相似文献   

8.
Discusses acoustic losses in synchronous leaky surface acoustic wave (LSAW) resonators on rotated Y-cut lithium tantalate (LiTaO3 ) substrates. Laser probe measurements and theoretical models are employed to identify and characterize the radiation of leaky waves into the busbars of the resonator and the excitation of bulk acoustic waves. Escaping LSAWs lead to a significant increase in the conductance, typically occurring in the vicinity of the resonance and in the stopband, but they do not explain the experimentally observed deterioration of the electrical response at the antiresonance. At frequencies above the stopband, the generation of fast shear bulk acoustic waves is the dominant loss mechanism  相似文献   

9.
Application of line-focus-beam (LFB) acoustic microscopy is extended to characterization of substrates for SH-type SAW devices. Theoretical and experimental studies on a wave mode for characterization are carried out on 36°Y-cut LiTaO3 wafers. A Rayleigh-type mode of leaky surface acoustic waves (LSAWs) must be employed instead of an SH-type mode of leaky pseudo-surface waves (LPSAWs). Experimental results show that the LSAW propagation should be directed along the X-axis because the LSAW velocities are more sensitive to chemical composition and elastic inhomogeneities. The relations among the LSAW velocities, densities, and Curie temperatures are determined. The LSAW velocity increases linearly at the rate of 0.52 m/s/°C with the Curie temperature. A chemical composition change of 0.03 Li2 O-mol%, corresponding to temperature resolution of better than 0.3°C, is easily detected by the velocity measurements. Elastic inhomogeneities due to residual multi-domains, produced during the poling process during wafer fabrication, are interpreted quantitatively by this ultrasonic technology  相似文献   

10.
Suppression of the leaky SAW attenuation with heavy mechanical loading   总被引:2,自引:0,他引:2  
We discuss effects on the propagation of surface acoustic waves (SAW) due to heavy mass loading on Y-cut lithium niobate and lithium tantalate substrates. An abrupt reduction in the leaky-SAW (LSAW) attenuation is observed in the measured admittance of a long resonator test structure on 64 degrees -YX-cut lithium niobate for aluminum electrodes of thickness h/lambda(0) beyond 9-10%. This experimental fact is explained theoretically as the slowing down of the leaky wave below the velocity of the slow shear surface-skimming bulk wave (SSBW), such that energy dissipation into bulk-wave emission becomes inhibited. An infinite transducer structure is modeled using the periodic Green's function and the boundary-element method (BEM); the computed theoretical properties well explain for the experimental findings. The model is further employed to quantify the leaky surface-wave attenuation characteristics as functions of the crystal-cut angle and the thickness of the electrodes. The resonance and antiresonance frequencies and the corresponding Q values are investigated to facilitate the selection of crystal cuts and electrode thicknesses. The transformation of the leaky SAW into a SAW-type nonleaky wave is also predicted to occur for gold electrodes, with considerably thinner finger structures.  相似文献   

11.
Simulation of characteristics of a LiNbO3/diamond surface acoustic wave   总被引:1,自引:0,他引:1  
High-frequency surface acoustic wave (SAW) devices based on diamond that have been produced to date utilize the SiO2/ZnO/diamond structure, which shows excellent characteristics of a phase velocity of over 10,000 m/s with a zero temperature coefficient; this structure has been successfully applied to high-frequency narrowband filters and resonators. To expand material systems to wideband applications, c-axis-oriented LiNbO3 on diamond was studied and a coupling coefficient up to 9.0% was estimated to be obtained. In this paper, the characteristics of LiNbO3/diamond with the assumption that the LiNbO3 film is a single crystal have been studied by theoretical calculations to find higher coupling coefficient conditions. Calculations are made for the phase velocity, the coupling coefficient, and the temperature coefficient of the Rayleigh wave and its higher mode Sezawa waves. As a result, LiNbO3/diamond is found to offer a very high electromechanical coupling coefficient of up to 16% in conjunction with a high phase velocity of 12,600 m/s and a small temperature coefficient of 25 ppm/deg. This characteristic is suitable for wide bandwidth applications in high-frequency SAW devices.  相似文献   

12.
Measurements that indicate that the surface-acoustic-wave (SAW) temperature coefficients of delay and velocity over approximately room temperature to +100 degrees C for the popular cuts of lithium niobate are presented. These values of delay coefficient are close to the value previously given for Y-cut LiNbO(3) but are significantly different from values given for the rotated cuts.  相似文献   

13.
Langasite (LGS) is a novel piezoelectric crystal. The authors numerically analyses the temperature stability of surface acoustic waves (SAW) and the relation of SAW propagation with temperature on certain optimal cuts on LGS in this paper. The results show that LGS has better temperature stability than traditional piezo crystals. The results also demonstrate that the velocity of SAW decrease with temperature, the electro-mechanical coupling constant (k2) and temperature coefficient of frequency increases parabolically and the power flow angle increases linearly on certain optimal cuts of LGS. The calculation result compared with the experimental and show good agreement.  相似文献   

14.
Accurate measurements of the acoustical physical constants (elastic constants, piezoelectric constants, dielectric constants, and density) of commercially available and widely used surface acoustic wave (SAW)-grade synthetic α-quartz are reported. The propagation directions and modes of bulk waves optimal for accurately determining the constants were selected through numerical calculations, and three principal X-, Y-, and Z-cut specimens and several rotated Y-cut specimens were prepared from a single crystal ingot to determine the constants and to confirm their accuracy. All of the constants were determined through highly accurate measurements of the longitudinal velocities, shear velocities, dielectric constants, and density. The velocity values measured for the specimens that were not used to determine the constants agreed well with those calculated from the determined constants, within a difference of ±0.20 m/s (±0.004%)  相似文献   

15.
Piezoelectric thin films on high acoustic velocity nonpiezoelectric substrates, such as ZnO, AlN, or GaN deposited on diamond or sapphire substrates, are attractive for high frequency and low-loss surface acoustic wave devices. In this work, ZnO films are deposited on AlxGa1-xN/c-Al2O3 (0 < or = chi < or = 1) substrates using the radio frequency (RF) sputtering technique. In comparison with a single AlxGa1-xN layer deposited on c-Al2O3 with the same total film thickness, a ZnO/AlxGa1-xN/c-Al2O3 multilayer structure provides several advantages, including higher order wave modes with higher velocity and larger electromechanical coupling coefficient (K2). The surface acoustic wave (SAW) velocities and coupling coefficients of the ZnO/AlxGa1-xN/c-Al2O3 structure are tailored as a function of the Al mole percentage in AlxGa1-xN films, and as a function of the ZnO (h1) to AlxGa1-xN (h2) thickness ratio. It is found that a wide thickness-frequency product (hf) region in which coupling is close to its maximum value, K(2)max, can be obtained. The K(2)max of the second order wave mode (h1 = h2) is estimated to be 4.3% for ZnO/GaN/c-Al2O3, and 3.8% for ZnO/AlN/c-Al2O3. The bandwidth of second and third order wave modes, in which the coupling coefficient is within +/- 0.3% of K(2)max, is calculated to be 820 hf for ZnO/GaN/c-Al2O3, and 3620 hf for ZnO/AlN/c-Al2O3. Thus, the hf region in which the coupling coefficient is close to the maximum value broadens with increasing Al content, while K(2)max decreases slightly. When the thickness ratio of AlN to ZnO increases, the K(2)max and hf bandwidth of the second and third higher wave modes increases. The SAW test devices are fabricated and tested. The theoretical and experimental results of velocity dispersion in the ZnO/AlxGa1-xN/c-Al2O3 structures are found to be well matched.  相似文献   

16.
This paper is concerned with the electromechanical coupling factors for bulk waves in KNbO(3) crystal. The dependence of coupling factors on the orientation of vibrators for various types of vibration modes has been calculated. As a result, it has been found that most of these coupling factors are very large at certain orientations of vibrators. Especially, the maximum coupling factor of the thickness-extensional mode excited with a perpendicular field, k(t ), is as high as 69% for the rotated X-cut by an angle 49.5 degrees about the Y-axis; that of the thickness-shear mode, k(s), is 88% for the X-cut. To the best of our knowledge, these coupling factors are the highest among those of known piezoelectrics. It has also been found that the coupling factor of the width-extensional mode of a thin finite-width plate with electrodes on its edges, k(ww)', is 82% for the rotated Z-cut by an angle 43.5 degrees about the Y-axis. This vibrator would be promising as elements of phased array ultrasonic probes.  相似文献   

17.
A method of periodic Green's functions with a propagation factor exp(iβx), unknown in advance, is used to calculate dispersion curves and attenuation coefficients for Rayleigh- and leaky- waves propagating in a periodic system of thin electrodes on a piezoelectric surface. To describe the charge distribution on the electrodes both a step approximation and Chebyshev polynomials are used, the last being more adequate in most cases. Numerically determined values of the Green's function are used and interpolated either linearly or using a modified variant of Ingebrigtsen's formula. Such basic parameters as stopband width, stopband center frequency, wave velocity and attenuation in the stopband are found. These parameters can be used in the coupling-of-modes (COM) analysis and design of SAW devices. The analysis includes bulk wave radiation and scattering. The dependence of the corresponding attenuation coefficient on frequency is determined. Results obtained allow the determination directly and properly of the COM parameters and the design of SAW devices having large number of electrodes most precisely and rapidly. Numerical results for Rayleigh waves on YZ-LiNbO3 and leaky waves on 36°YX-LiTaO3 substrates are presented  相似文献   

18.
Summary We have developed a wireless surface acoustic wave (SAW) pressure sensor operating in the pressure range of 0 Pa to 250 kPa. In order to minimize the temperature sensitivity the pressure sensor is made of on an all-quartz package (AQP), which has been designed with the Finite Element Method. The package of the pressure sensor consists of a diaphragm and a cover, both made of conventional Y-cut quartz. A blind-hole was structured into the sensor cover. By attaching the cover and the diaphragm with an epoxy-adhesive, this blind-hole forms a closed cavity. The SAW element is a reflective delay line (RDL), working at 434 MHz. The RDL consists of ten reflectors and extends over the whole diaphragm. The pressure is determined by evaluating the change of the carrier phase shifts of the reflected impulses at the reflectors. We show that it is possible to minimize the temperature sensitivity and to achieve good linearity by proper positioning of the SAW reflectors. The measurements of the SAW pressure sensor show a deviation from linearity of less than ±0,7%. The temperature dependence is almost negligible in the range from-20°C to 100°C.The objective of this paper is to provide a deeper insight into the behaviour of SAW propagation on pre-stressed substrates. To do so, we start with investigating the behavior of SAWs on stress-free substrates followed by an analysis of SAW propagation on pre-stressed substrates. Further, the requirements on suitable substrate materials for the AQP are specified. Finally, we take advantage of the method of differences to compensate for the temperature dependence of our pressure sensor.  相似文献   

19.
Proton-exchanged (PE) waveguides in Z-cut LiNbO3 have been fabricated using benzoic acid. Secondary-ion mass spectrometry (SIMS) measurements show that the distribution of hydrogen in the PE Z-cut LiNbO3 samples exhibits a step-like profile with the diffusion constant D0 and the activation energy Q of about 2.82×108 μm2/h and 87.76 kJ/mol, respectively. On the other hand, the important parameters for the design of surface acoustic wave (SAW) devices are measured and discussed. The results show that the phase velocity and electromechanical coupling coefficient decrease with the increase of kd, where k is the wavenumber and d is the waveguide depth. The variation of insertion loss becomes saturated at about kd=0.068 with a maximum increase of about 4~5 dB. The temperature coefficient of delay calculated from the frequency change of the output of SAW delay line shows an evident increase in the PE layer. Moreover, the effects of postannealing can result in a restoration of the decreased velocity and an improvement of the insertion loss  相似文献   

20.
Coupled-mode theory is used for the analysis of surface transverse waves (STWs) propagating under metal-strip gratings in the YZ plane of quartz. Analytical expressions are obtained for the reflection and transmission coefficients of waves propagating on rotated Y-cut substrates of weakly piezoelectric trigonal, tetragonal, or hexagonal crystals. A quadratic dependence of the stopband width on the height-to-period ratio of the electrodes is found. This is an agreement with stopband width measurements. The results can be used in the analysis of STW grating structures, particularly the two-port resonator filter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号