首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Core debris samples were obtained from the upper plenum debris, the central consolidated region, standing fuel rod assemblies, and the lower plenum debris to determine the temperatures that were reached during the accident, the materials interactions that occurred, the bulk composition of the materials, the oxidation of the materials and the retention of fission products in the core materials. The results of the metallurgical examinations and the bulk compositions are described in this paper.  相似文献   

2.
The coolability limits of a reactor pressure vessel lower head   总被引:1,自引:0,他引:1  
Configurations II and III of the ULPU experimental facility are described, and results from a comprehensive set of experiments are provided. The facility affords full-scale simulations of the boiling crisis phenomenon on the hemispherical lower head of a reactor pressure vessel submerged in water, and heated internally. Whereas Configuration I experiments (published previously) established the lower limits of coolability under low submergence, pool-boiling conditions, with Configuration II we investigate coolability under conditions more appropriate to practical interest in severe accident management; that is, heat flux shapes (as functions of angular position) representative of a core melt contained by the lower head, full submergence of the reactor pressure vessel, and natural circulation. Additionally, with Configuration III, we examine the effect of a channel-like geometry created by the reactor vessel thermal insulation. Critical heat fluxes as a function of the angular position on the lower head are reported and related to the observed two-phase flow regimes.  相似文献   

3.
Within the framework of the 6 month WANO program, small samples were cut from the inside surface of the Kozloduy NPP unit 2 reactor pressure vessel to assess the actual condition of the pressure vessel material before and after annealing. The actual values of the weld metal characteristics required for estimating radiation-limited lifetime—the ductile-to-brittle transition temperature (DBTT) in the initial state (Tko) and the phosphorus and copper contents which affect the radiation stability of steel—were not determined during manufacturing. The Kozloduy unit 2 pressure vessel had no surveillance program. Radiation stability was evaluated using dependencies based on analysis results for surveillance samples taken from other VVER-440 reactors. For this reason, the actual pressure vessel characteristics and their changes in the course of reactor operation, as well as comparison of experimental with calculated data were the principle objectives of the study.Instrumented impact tests were carried out on sub-size specimens of base and weld metal. Correlation dependencies were used with standard tests to determine DBTTs for the base and weld metal (in accordance with Russian standards): base metal before annealing 40 °C, after annealing 16 °C; weld metal before annealing 212 °C, after annealing 70 °C.The estimated value of Tko, for the initial, unirradiated weld metal, was 50 °C. The experimental results were compared with a prediction of the extent of radiation-induced embrittlement of Kozloduy unit 2 pressure vessel materials. It was confirmed that radiation-induced embrittlement of the base metal does not impose any limits on the radiation-limited lifetime of the pressure vessel.The predicted increase in the DBTT of the weld metal as a result of irradiation (about 165 °C) is practically equal to the experimental result (162 °C). However, the value of Tf obtained from tests before annealing (212 °C) is about 40 °C higher that the estimated value, i.e. the calculation does not produce a conservative estimate. This was explained by a low estimate of Tko (10 °C), which had been calculated using data from chemical analysis of the weld metal, performed by the manufacturer. The investigations on the samples, however, yielded an estimated value of Tko = 50 °C.The effectiveness of annealing in restoring the mechanical properties of irradiated VVER-440 reactor pressure vessels was confirmed. Recovery annealing lowered the DBTT of the weld metal by 85% or more of its radiation-induced shift.  相似文献   

4.
The studies on the specimens manufactured from the templates cut out from the weld 4 of Kozloduy NPP Unit 1 reactor vessel have been conducted. The data on chemical composition of the weld metal have been obtained. Neutron fluence, mechanical properties, ductile to brittle transition temperature (DBTT) using mini Charpy samples have been determined. The phosphorus and copper content averaged over all templates is 0.046 and 0.1 wt.%, respectively. The fluence amounted up to 5×1018 n cm−2 within 15–18 fuel cycles, and about 5×1019 n cm−2 for the whole period of operation. These values agree well with calculated data. DBTT was determined after irradiation (Tk) to evaluate the vessel metal state at the present moment, then after heat treatment at the temperature of 475°C to simulate the vessel metal state after thermal annealing (Tan), and after heat treatment at 560°C to simulate the metal state in the initial state (Tk0). As a result of the tests the following values were obtained: Tk, +91.5°C; Tan, +63°C; and Tk0, 54°C. The values of Tk and Tan obtained by measurements were found to be considerably lower than those predicted in accordance with the conservative method accepted in Russia (177°C for Tk and 100°C for Tan). Thus, the obtained results allowed to make a conclusion that it is not necessary to anneal Kozloduy NPP Unit 1 reactor vessel for the second time. The fractographic and electron-microscopic research allowed to draw some conclusions on the embrittlement mechanism.  相似文献   

5.
In PWR severe accident scenarios, involving a relocation of corium (core melt) into the lower head, the possible failure mode of the reactor pressure vessel (RPV), the failure time, the failure location and the final size of the breach are regarded as key elements, since they play an important part in the ex-vessel phase of the accident.Both the LHF and OLHF experiments as well as the FOREVER experiments revealed that initiation of the failure is typically local. For the case of a uniform temperature distribution in the lower head, crack initiation occurs in the thinnest region and for the case of a non-uniform temperature distribution, it initiates at the highest temperature region. These experimental results can be modelled numerically (but more accurately with 3D finite element codes). The failure time predictions obtained using numerical modelling agree reasonably well with the experimental values.However, the final size of the failure is still an open issue. Analyses of both the LHF and OLHF experimental data (as well as of that from the FOREVER experiments) do not enable an assessment of the final size of the breach (in relation with the testing conditions and results).Indeed, the size of breach depends on the mode of crack propagation which is directly related to the metallurgical characteristics of the RPV steel. Small changes in the initial chemical composition of the vessel material can lead to different types of rupture behaviour at high temperatures. Different rupture behaviours were observed in the LHF and OLHF experiments using the SA533B1 steel. Similar observations were previously noticed during a CEA material characterization programme on the 16MND5 steel. To determine crack propagation and final failure size, 3D modelling would thus be needed with an adequate failure criterion taking into account the variability in behaviour of the RPV material at high temperatures.This paper presents an outline of the methodology being used in a current research programme of IRSN, in partnership with CEA and INSA Lyon. The aim is to model crack opening and crack propagation in French RPV lower head vessels under severe accidents conditions. This programme was initiated in 2003 and is made up of five main sections, namely an inventory of the different French PWR lower head materials, metallurgical investigations to better understand the cause of mechanical behaviour variability that is observed and related to material microstructure, Compact Tension (CT) testing of specimens to characterize the tear resistance of the material, validation of the modelling using experiments on tube specimens and the development of a new failure criterion for the 3D finite element models.  相似文献   

6.
7.
As part of the Oak Ridge National Laboratory's Heavy-Section Steel Technology Program, studies have been conducted to determine flaw density in a section of reactor pressure vessel cut from the Hope Creek Unit 2 vessel. This boiling water reactor vessel was never in service. One objective was to evaluate the approximate 0.7- by 3-m (2- by 10-ft) segment of the vessel provided using ultrasonic flaw detection methods performed with both ASME Code techniques and supplemental ultrasonic methods. A second objective was to evaluate the inner surface stainless steel cladding for cracks with a high sensitivity penetrant examination. Both objectives were successfully completed. Five Code-recordable indications were detected ultrasonically; however, all were found to be anomalies associated with the cladding. One flaw was detected by the supplemental ultrasonic tests, and it was analyzed destructively. This flaw was pipelike indication, about 20 mm (0.8 in.) long extending along the length of the longitudinal weld in which it was located and was about 20 mm below the cladding surface. The flaw had a through-wall dimension (or length) of about 6 mm (0.24 in.) for an approximate 3-mm (0.1-in.) distance along the 20-mm major length. No flaws were detected by the penetrant examination of the cladding surface.  相似文献   

8.
The cooldown of the TMI-2 reactor vessel due to high pressure injection that occurred at 200 min into the accident is re-examined. Flow regimes and condensation heat transfer in the cold legs and downcomer are considered. The presence of noncondensibles (hydrogen) and a mechanism leading to its accumulation around the condensation interfaces lead to conclusions that are materially different from those of a previous study that did not consider these effects.  相似文献   

9.
Still today after decades of severe accident research it is not well understood why the molten corium did not attack or even penetrate the lower head vessel wall in the TMI 2 accident. The findings can only be explained by additional assumptions which have been proposed by various authors. This paper is also looking for an explanation by examining the role of the debris cooling in the TMI lower head. The present knowledge of debris cooling is based on small-scale experiments with simulant debris. It is argued that the experiments have been stopped to early and therefore do not reveal the potential of debris bed coolability in case of a corium debris bed. It is also argued that in TMI the debris bed was in a state of turbulence and fluidization such that the coolabilty was much higher than in the small-scale experiments. Basically this paper hypothesizes that the unknown phenomenon in the TMI 2 accident is the strong interaction of the debris particles of a wide range of grain sizes and the strong turbulent motion of the cooling fluid and vapor mixture in conjunction with a “virtual gap” at the vessel wall.  相似文献   

10.
The present paper deals with a theoretical analysis of the spray cooling of a Reactor Pressure Vessel (RPV) head in a Boiling Water Reactor (BWR). To this end a detailed computational model has been developed. The model predicts the trajectories, diameters and temperatures of subcooled droplets moving in saturated vapor. The model has been validated through comparison with experimental data, in which droplet temperatures were measured as functions of the distance that they cover in saturated vapor from the moment they leave the sprinkler outlet to the moment they impact on the RPV head inner wall. The calculations are in very good agreement with measurements, confirming the model adequacy for the present study. The model has been used for a parametric study to investigate the influence of several parameters on the cooling efficiency of the spray system. Based on the study it has been shown that one of the main parameters that govern the temperature increase in a subcooled droplet is its initial diameter. Comparisons are also made between conclusions from the theoretical model and observations made through flow and temperature measurements in the plant (Forsmark 1 and 2). One of these observations is that the rate at which the RPV head temperature decreases on the way down from hot to cold standby is constant and independent of the sprinkling flow rate as long as the flow rate is above a certain minimum value. Accordingly, the theoretical model shows that if one assumes that the cooling of the RPV head is through a water film built on the inner wall due to sprinkling, the heat removal rate is only very weakly dependent on the sprinkling flow rate.  相似文献   

11.
黄倩倩  吕炜枫  熊军 《辐射防护》2019,39(5):391-395
压水堆核电厂停堆开盖时刻主冷却剂放射性浓度限值是核电厂的重要设计参数。本文基于停堆开盖后厂内辐射风险来源分析,建立了适用于压水堆核电厂停堆压力容器开盖时刻主冷却剂中的放射性浓度控制值评估方法,并采用欧洲第三代压水堆技术方案(EPR)堆型核电厂的设计参数对建立的方法进行了验证。验证结果表明:基于此方法得出的停堆开盖限值与EPR堆型核电厂原设计较接近。  相似文献   

12.
A semi-analytical three-dimensional method is applied to the axisymmetric problem of elastic stress analysis of a shell intersection consisting of a pressure vessel with a hemispherical head. The method uses the homogeneous eigenfunction technique of formulating general solutions to the governing equations and the numerical boundary-point-least-squares procedure of satisfying the continuity conditions on the vessel-head interface. A comparison is made with a previous shell theory solution and the present method is assessed for suitability for more complex intersection problems.  相似文献   

13.
During pressure build-up in a 900 MW reactor pressure vessel, the head of the vessel was holographed. It will be shown how a maximum of information can be extracted from the hologram using computer generated interferograms. Based on a trial and error method the deformation assumption for the head is altered until a best correlation is reached between computer generation and experiment.  相似文献   

14.
This paper describes a best-estimate analysis of the initial core boil-down and heat-up transient at Three Mile Island Unit (2) on 28 March 1979. This transient began shortly after all reactor coolant pumps were secured (100 min after reactor trip) and was terminated by a period of sustained high pressure injection of emergency cooling water, starting at 202 min.

The analysis is primarily directed to understanding the progression of core damage, rather than providing a detailed characterization of the core end-state condition. The latter objective can be achieved only after vessel head removal and visual examination.

The thrust of the present effort has been to: (1) develop a core coolant mixture level (dry-out level) calculation which satisfies the boundary conditions implied by various instrument responses and system operational characteristics; (2) couple the level calculation with a core heat-up modelto simulate the accumulation of thermal damage in the exposed, upper regions of the core; (3) compare calculated gross damage to the core with measurements of hydrogen and fission product releases subsequent to the accident.

Results indicate that:

1. (i) Observed containment hydrogen levels were due to Zircaloy/stainless steel corrosion that occurred during the period of core uncovering between the de-activation of the loop A reactor coolant pump (100 min after trip) and sustained operation of the high pressure injection system 100 min later. Appreciable zircaloy oxidation probably commenced at 150 min after trip, and continued at a high rate until the sustained high pressure injection at 202 min caused a major core quench.
2. (ii) There was some potential for fuel liquefaction. Calculations imply that peak fuel temperatures did not exceed the UO2 pellet melting temperature, but 30% of the fuel was exposed to temperatures where liquid U---Zr---O alloys could have formed.
3. (iii) A substantial fission product release was obtained from fuel over-heating; however, an apparent disparity between the expected fission product release by calculation and the high range of fission product estimates obtained from plant measurements suggests that a significant release fraction may have originated from powdered or rubbilized fuel during cooldown. Additional gas releases may have developed from hot spots which persisted after core quench.
4. (iv) Steam temperatures in the upper plenum, at the outlet nozzle elevation, were generally below 900°C (1650°F) although this value was probably exceeded for a few min during the partial fuel quench caused by activation of the loop 2B reactor coolant pump, at 174 min after trip. The metal-work in the upper plenum, above the upper tieplate did not experience appreciable heating.

Thermal damage to the fuel and consequential weakening and mechanical disruption of the core was essentially complete 230 min after turbine trip.  相似文献   


15.
The paper reports detailed assessments and representative application of the effective convectivity model (ECM) developed and described in the companion paper (Tran and Dinh, submitted for publication). The ECM capability to accurately predict energy splitting and heat flux profiles in volumetrically heated liquid pools of different geometries over a range of conditions related to accident progression is examined and benchmarked against both experimental data and CFD results. Augmented with models for phase changes in binary mixture, the resulting PECM (phase-change ECM) is validated against a non-eutectic heat transfer experiment. The PECM tool is then applied to predict thermal loads imposed on the reactor vessel wall and Control Rod Guide Tubes (CRGTs) during core debris heatup and melting in the BWR lower plenum. The reactor-scale simulations demonstrate the PECM's high computational performance, particularly needed to analyze processes during long transients of severe accidents. The analysis provides additional arguments to support an outstanding potential of using the CRGT cooling as a severe accident management measure to delay the vessel failure and increase the likelihood of in-vessel core melt retention in the BWR.  相似文献   

16.
Probabilistic fracture mechanics investigations of the contribution of pressurized thermal shock transients to reactor pressure vessel failure probability of the reference plant for the German reactor safety study phase B, BIBLIS-B, are presented. The applied methods and the calculation model are discussed. The most important result of parametric analyses is that the postulated flaw distribution in the vessel has a dominant influence on the calculated conditional failure probability. With regard to the transient behavior the results show, that the temperature drop induced by the thermal shock has great influence on the conditional failure probability, whereas the decay rate of the temperature change has minor influence.  相似文献   

17.
Several OECD countries still have great interest to analyze the TMI-2 accident. Thermal hydraulic best estimate codes and severe accident codes are used to calculate the TMI-2 analysis exercise defined by a CSNI task group. Fourteen organizations in nine OECD countries are participating in the exercise. Four thermal hydraulic best estimate codes and six severe accident codes are used. The Federal Republic of Germany (FRG) is using the thermal hydraulic code ATHLET developed in the GRS to calculate the TMI-2 analysis exercise. Lessons learned are concentrated on the assessment of ATHLET, show advantages of the two phase thermal hydraulic model used, and identify areas for further development. Results from ATHLET calculations are compared with results from other OECD-codes.  相似文献   

18.
In this paper the bifurcation buckling pressure for the torispherical head of the Mark II type BWR containment vessel subjected to dynamically applied internal pressure is calculated, using a finite element program for a dynamic analysis. Three kinds of dynamic loadings, that is, step loading, ramp loading and pulse loading are considered in the present analysis. The minimum bifurcation buckling pressure is predicted for the respective loadings. The minimum bifurcation buckling pressure for dynamic loading is much lower than the bifurcation buckling pressure for static loading.  相似文献   

19.
For future reactors, the control and cooling of ex-vessel corium melts is under consideration to increase the passive safety features even for very unlikely severe accidents. In this context, different research activities are studying ex-vessel corium behaviour and control, including the implementation of a core cooling device outside the reactor pressure vessel in order to prevent basement erosion and to maintain the integrity of the containment. This paper describes current research on key phenomena which must be understood and quantified to be finally controlled by the cooling device. These are the release of corium melt from the pressure vessel, the temporary retention of the melt in the reactor cavity until melt through of the gate, spreading of the melt on a large surface, and finally the cooling and solidification of the melt by direct water contact. The experiments use high temperature melts which are similar to corium melts. Where necessary, models are developed to transfer the results to reactor scale.  相似文献   

20.
Since the suggestion of external reactor vessel cooling (ERVC), the effects of melting and cooling on the response of structural integrity of the reactor pressure vessel (RPV) under core melting accident conditions have been investigated. To investigate the initial behavior of RPV lower head and the effects of analysis conditions on the structural integrity of RPV, the transient analysis is utilized considering the transient state. To obtain an analogy with real phenomena, the material properties were determined by combining and modifying the existing results considering phase transformation and temperature dependency. The temperature and stress analyses are performed for core melting accident by using ABAQUS. Finally, the potential for vessel damage is discussed using the Larson-Miller curve and damage rule. In addition, the results by transient analysis are compared with those by steady state analysis and the effects of analysis conditions on structural integrity are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号