首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
质子交换膜燃料电池启停衰减的研究进展   总被引:2,自引:1,他引:1  
余意  王谌  詹志刚  潘牧 《电池工业》2010,15(2):120-123
质子交换膜燃料电池(PEMFC)的耐久性和寿命是制约其商业化发展的重要因素。车载燃料电池不可避免的要经历频繁启停的工况,因此,在启停过程中,电池的性能衰减问题更加突出。综述了近几年来,对启停循环中燃料电池性能衰减的研究,以及关于如何防止电池性能衰减的探讨,最后对如何有效地减少PEMFC的衰减提出了意见和建议。  相似文献   

2.
余意 《电池》2015,45(2):74-77
以活性面积为330 cm2的电堆为研究对象,考察质子交换膜燃料电池(PEMFC)经历频繁启停操作后的性能衰减。反应气体的分布不均匀,会造成单片电池电压在氮气吹扫过程中下降速率不一致,甚至出现某一片或者几片电池出现反极的现象;PEMFC电堆在经历频繁的启停循环后,性能下降,且高电流密度区的电压衰减更快;随着启停循环的增多,性能的下降会变慢。当电流为100 A时,经历500次启停循环后,前200次启停循环的平均电压衰减速率为后300次衰减速率的3倍,而电堆中单片电池的均一性并未明显恶化。  相似文献   

3.
启动-关机过程中阳极的氢-空界面,会导致阴极催化层出现高电位(1.4~1.5 V),严重腐蚀催化剂的碳载体。这是影响燃料电池动态运行寿命的主要因素之一。本文基于3种典型碳载体的催化剂,制备了燃料电池膜电极。并构建阳极侧氢-空界面,模拟实际启停过程,研究了3种膜电极在循环启停过程中交流阻抗、电化学活性面积及极化性能的变化规律。结果表明,石墨化碳载体可耐受900次启停,无定形的多孔型碳仅可运行250次启停,而半有序结构的高比表面积碳可运行450次启停。  相似文献   

4.
启动-关机过程中阳极的氢-空界面,会导致阴极催化层出现高电位(1.4~1.5 V),严重腐蚀催化剂的碳载体。这是影响燃料电池动态运行寿命的主要因素之一。本文基于3种典型碳载体的催化剂,制备了燃料电池膜电极。并构建阳极侧氢-空界面,模拟实际启停过程,研究了3种膜电极在循环启停过程中交流阻抗、电化学活性面积及极化性能的变化规律。结果表明,石墨化碳载体可耐受900次启停,无定形的多孔型碳仅可运行250次启停,而半有序结构的高比表面积碳可运行450次启停。  相似文献   

5.
PEMFC用Pt/C催化剂耐久性的研究进展   总被引:2,自引:1,他引:2  
总结了质子交换膜燃料电池(PEMFC)用Pt/C催化剂在长时间运行过程中性能衰减的主要原因及近年来提高Pt催化剂稳定性的方法.性能衰减的主要原因有:Pt在碳载体上的迁移、团聚;Pt纳米粒子的溶解再沉积;Pt中毒及碳载体的腐蚀.选用更稳定的载体和Pt合金化是提高稳定性研究的重点,通过对Pt进行封装也可提高Pt/C催化剂的稳定性.  相似文献   

6.
催化剂碳载体的腐蚀会引起催化剂衰减,最终导致PEMFC电池性能下降.在三电极体系中采用动电势扫描和恒电势氧化的方法对XC72、MWNT和石墨化XC72三种碳载体的抗腐蚀能力进行了研究.实验结果表明在三种载体中,石墨化XC72具有最优的抗腐蚀能力,MWNT其次,XC72的抗腐蚀能力最差.试验分析了温度的升高对载体腐蚀的促...  相似文献   

7.
采用流延法重铸Pt掺杂的Pt-PSFA复合膜,组装了常压氢-空自增湿质子交换膜燃料电池(PEMFC)。通过对催化剂层载量、平整层载量的优化,利用催化剂涂覆膜(CCM)技术制备了性能稳定的自增湿膜电极组件(MEA)。在常压、操作温度为60℃、干燥反应气的条件下,Pt-PSFA复合膜组装的PEMFC的最大功率密度为448 mW/cm2。MEA的活性面积从6.25 cm2增大到25 cm2,PEMFC的性能几乎没有衰减。  相似文献   

8.
基于自制质子交换膜燃料电池(PEMFC)及相关设备,结合脉动进氢原理,设计搭建无排水PEMFC系统并提出相应的控制策略,加强脉动进氢的效果,使流道内部界面的生成水更均匀,水平衡更好,PEMF℃系统无需进行定期排水。经实验验证,实现了PEMFC无排水,避免了由此带来的不足和缺陷,同时能够保持PEMFC的输出性能稳定近8 h无衰减。  相似文献   

9.
硫和多壁碳纳米管(MCNTs)在高温无氧条件下直接反应,在MCNTs上引入巯基基团制得巯基碳纳米管载体(MCNTs-SH)。将XC-72、MCNTs和MCNTs-SH三种载体及其制得的催化剂分别进行氧化性测试和抗反极测试。实验结果表明:相比于XC-72和MCNTs,MCNTs-SH在高电势下具有最小的腐蚀电流;相比于Pt/XC-72和Pt/MCNTs,Pt/MCNTs-SH在半电池ADT测试和恒电势氧化测试前后的ECSA衰减程度最小;在分别采用三种催化剂作为阳极的膜电极中,Pt/MCNTs-SH在1 000 mA/cm2处的电压在抗反极测试前后的性能衰减程度最小。该研究结果对于PEMFC的抗氧化催化剂载体的开发具有重要意义。  相似文献   

10.
本文研究了PEMFC中氧电极催化剂层内PTFE含量和铂载量对电池性能的影响,并运用TEM和XRD分析了运行一段时间后电池性能衰减的原因。试验发现:1)PTFE含量为30w%时电池性能较好;2)铂载量增加,电池性能改善,但催化剂层过厚会引起传质问题。电池运行后性能略有衰减可能由两个因素引起:1)铂晶粒变大2)氧电极催化剂层防水特性发生变化。  相似文献   

11.
与质子交换膜燃料电池相比,阴离子交换膜燃料电池不仅能显著提高阴极氧还原反应(ORR)动力学,而且可采用非贵金属催化剂大幅降低成本和减少极板腐蚀,成为新能源领域中的研究热点。对阴离子膜燃料电池中阴极非贵金属氧还原催化剂的研究进展进行了详细评述,在此基础上提出杂原子掺杂的多孔纳米碳材料和以其为载体担载合金化的非贵金属是阴离子交换膜燃料电池阴极催化剂今后的发展方向。  相似文献   

12.
质子交换膜燃料电池(PEMFC)商业化面临的一个主要问题是电池的耐久性问题,催化剂的稳定性下降是影响其寿命的关键因素之一。从Pt的溶解再沉积,Pt的团聚长大及碳载体的腐蚀等方面探讨了影响催化剂稳定性的主要因素,概述了提高催化剂稳定性的几种研究思路,并对PEMFC催化剂的发展趋势进行了展望。  相似文献   

13.
王芳  唐浩林  潘牧  袁润章 《电池》2007,37(1):64-66
对质子交换膜燃料电池膜电极材料的退化行为、降解机理和影响因素进行了综述,认为膜的退化主要原因是:高分子的分解导致膜的电导率下降和膜出现小孔对反应原料渗透.催化层的退化,是由C载体的腐蚀和Pt的电迁移所致.  相似文献   

14.
质子交换膜燃料电池的结构设计对燃料电池车的开发具有重要意义。目前的电池模型通常把催化层简化成一层薄膜,作为边界条件使用,无法分析催化层结构对电池性能的影响。建立了考虑催化层结构参数的一维气相模型,通过有限元法研究电池内部的流场和电场分布。仿真结果和实验符合良好。分析指出扩散层的孔隙率对电池性能影响较大,应高于0.3,催化层的孔隙率对电池性能影响较小。在催化剂载量不变的情况下,催化层厚度应为10~20 mm。  相似文献   

15.
采用质子交换膜燃料电池(PEM FC)与人力相结合的动力系统,设计出一种仅由PEM FC供电的电动车。该系统针对PEM FC在电动车启动、爬坡时输出功率不能很好满足车辆要求的特性,采用人力补偿及合理的控制策略使PEM FC在高效率下运行,克服PEM FC作为独立电源供电的不足。理论分析和实物运行结果表明,该系统具有较高的能量效率和良好的运行稳定性。  相似文献   

16.
质子交换膜燃料电池技术进展   总被引:4,自引:0,他引:4  
通过对近年来燃料电池专利的研究 ,对质子交换膜燃料电池 (PEMFC)研究中的关键问题 ,如聚合物电解质薄膜、催化剂、电极和电极膜组件制备工艺、流场的设计模式等进行分析 ,简单介绍了聚合物电解质薄膜、高活性催化剂、高性能电极和电极膜组件的制备工艺以及流场设计模式的发展和现状。指出提高电极的交换电流密度 ,降低电池的内阻是提高电池性能的基础 ,合理的流场设计模式是电池整体性能稳定的保障 ,各个因素相互影响。  相似文献   

17.
天然气、甲醇等碳氢化合物重整制氢作为燃料正在应用到质子交换膜燃料电池领域。为系统地研究重整气中CO对质子交换膜燃料电池性能的影响,采用热压法自制膜电极,研究了CO浓度、催化剂种类、操作温度、增湿操作等因素对质子交换膜燃料电池性能的影响。实验结果表明:20×10~(-6) CO浓度即能使电池性能显著下降60%~70%;Pt Ru/C催化剂对抗CO中毒的能力较Pt/C催化剂有明显提升,在100×10~(-6) CO浓度下能使性能提高70%;提高工作温度能有效地改善阳极CO中毒状况,在50×10~(-6) CO浓度并加湿的条件下,当操作温度从80℃提高到120℃时电池性能可增加一倍。同时增湿操作有利于改进电池在低浓度CO下的发电性能。  相似文献   

18.
燃料电池用碳材料的研究进展   总被引:6,自引:1,他引:5  
碳材料因其具有独特的物化性能以及各异的形态而成为电池部件的重要原材料,广泛应用于燃料电池中。以质子交换膜燃料电池(PEMFC)为例,介绍了燃料电池中电极基质、双极板、担体碳和贮氢碳材料的研究进展。涉及燃料电池电极基质和双极板的制备工艺与性能,以及催化剂担体碳的不同粒度、聚集形态对催化剂活性的影响。并对纳米碳贮氢材料在燃料电池方面的研究应用做了简单的评述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号