首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
The Cap Bon region of northeastern Tunisia is part of a young continental margin that presents a thick column of sediments deposited mainly during Cretaceous and Miocene extended tectonic episodes. This sedimentary package is characterised by broad synclines alternating with NE–SW trending anticlines, and is affected by numerous NE–SW, NW–SE and E–W striking faults. Oligo-Miocene sandstones constitute the most important potential reservoir rocks in the region.The distribution of subsurface temperatures in the Cap Bon basin reflects local groundwater circulation patterns and correlates with the location of known oil and gas fields. The results of geothermal studies could therefore prove useful in the search for new hydrocarbon resources in the region. Subsurface temperatures were measured in deep oil exploration and shallow water wells. Local geothermal gradients range from 25 to 35 °C/km, showing higher values in the Korbous and Zennia areas, which correspond to zones of groundwater discharge and convergence in the Oligo-Miocene aquifer system, respectively.Analysis of thermo-hydraulic and geochemical data relative to the thermal springs in the Korbous region along the Mediterranean coast has made a useful contribution to geothermal prospecting for potential deep reservoirs. Positive geothermal gradient anomalies correspond to areas of ascending thermal waters (i.e. discharge areas), whereas negative anomalies indicate areas of infiltrating colder meteoric waters (i.e. recharge areas). The zones of convergence of upward-moving water and groundwater may be associated with petroleum occurrences.  相似文献   

3.
A map of geothermal resources in Algeria is now being compiled. An inventory of hot springs has already been prepared. The groups of springs, of different chemical characteristics can mostly be found in the NE and NW of Algeria, with the most interesting ones in the NE. Huge reserves of hot waters (50–56°C) are present in the sedimentary basin of the low Sahara. Hammam Meskhoutine (Guelma) in the NE and Hammam Righa in the NW are of particular interest. The geothermal potential of both areas will be in heating applications.  相似文献   

4.
5.
The basement of the Pannonian (Carpathian) basin is represented by Paleozoic metamorphic and Mesozoic dolomite and limestone formations. The Tertiary basin gradually subsided during the Alpine orogeny down to 6000 m and was filled by elastic sediments with several water horizons.A heat flow of 2.0 to 3.4 μcal/cm2s gives temperature gradients between 45 and 70 °C/km in the basin. At 2000 m depth the virgin rock temperature is between 110 and 150°C. 80 geothermal wells about 2000 m deep have shown the great geothermal potential of the basin.The main hot water reservoir is the Upper Pliocene (Pannonian) sandstone formation. Hot water is produced by wells from the blanket or sheet sand and sandstone, intercalated frequently by siltstone. Between a 100–300 m interval, 3 to 8 permeable layers are exploited resulting in 1–3 m3/min hot water at 80–99°C temperature.Wells at present are overflowing with shut-in pressures of 3–5 atm.The Pannonian basin is a conduction-dominated reservoir. Convection systems are negligible, hot igneous systems do not exist. The assessment of geothermal resources revealed that the content of the water-bearing rocks down to 3000 m amounts to 12,600 × 1018cal. In the Tertiary sediments 10,560 × 1018cal and in the Upper Pannonian, 1938 × 1018cal are stored. In the Upper Pannonian geothermal reservoir, below 1000 m, where the virgin rock temperature is between 70 and 140°C, the stored heat is 768 × 108cal. A 1018 cal is equivalent to the combustion heat of 100 million tons of oil. The amount of recoverable geothermal energy from 768 × 108cal is 7.42 × 1018cal, i.e. about 10,000 MW century, not considering reinjection.At present the Pannonian geothermal reservoir stores the greatest amount of identified heat which can be mobilized and used. Hungary has 496 geothermal wells with a nominal capacity of 428 m3/min, producing 1342 MW heat. 147 wells have an outflow temperature of more than 60°C producing 190 m3/min, that is, 845 MW. In 1974 290 MWyear of geothermal energy was utilized in agriculture, district heating and industry.  相似文献   

6.
The Ahram, Mirahmad and Garu low-temperature geothermal springs in the Zagros Mountains, Boshehr Province, Iran, emerge along the Ghatar-Kazeroon fault. The average temperature of the springs is about 40 °C and the waters have appreciable amounts of dissolved solids and hydrogen sulfide. Based on chemical analyses, including stable isotopes of the thermal waters and data interpretations, and on a comparison with fresh water springs and wells in the study area, we conclude that the hot waters are of meteoric origin. Because of the prevailing geothermal gradient, the waters are heated as they circulate deep in the system through joints, fractures and the Ghatar-Kazeroon fault. During their deep circulation, the waters come into contact with Hormoz Series evaporites and the oilfield brines, resulting in an increase in dissolved ion concentrations.  相似文献   

7.
Chemical and isotopic data of thermal springs and wells indicate that some thermal water circuits in central and south Vietnam can reach temperatures of geothermal interest (150–200°C) in zones of normal-to-slightly anomalous thermal gradients. The low gas content and the low CO2 and H2S concentrations suggest that there is no contribution from a magmatic source. The geothermometry results indicate that the geothermal resources in south and central Vietnam are of medium enthalpy. These results confirm those of previous geochemical surveys and indicate that the most promising geothermal sites in Vietnam are Le Thuy, south of Dong Hoi and Mo Duc near Quang Nghai.  相似文献   

8.
Chemical geothermometry of hot springs in northern Thailand indicates that many have reservoir temperatures in excess of 150°C and some in excess of 180°C. Measurements of temperatures in abandoned oil wells in Fang Basin indicate geothermal gradients of 70 – 130 mK/m. The high geothermal gradient may be the result of extensional tectonics in northern Thailand, caused indirectly by sea-floor spreading in the Andaman Sea. Relatively high reservoir temperatures and shallow reservoir depths suggest that hot spring areas in northern Thailand may be potential sources of geothermal energy.  相似文献   

9.
Geochemical approach to the Bou Hadjar hydrothermal system (NE Algeria)   总被引:1,自引:0,他引:1  
The Bou Hadjar low-temperature hydrothermal system is located in northeast Algeria. The four main thermal springs that are the subject of the study emerge ith temperatures between 32 and 60°C from allochthonous formations. The reservoir temperature has been estimated from chemical compositions by utilizing simultaneously the silica, gas and sulfate-water oxygen isotope geothermometers, fluid-mineral equilibrium calculations, and a mixing model. According to these thermometric methods, the most probable subsurface temperature is in the range 75–106°C. The mixing model suggests a temperature of 125°C for the parent water.  相似文献   

10.
Temperature evaluation of the Bugok geothermal system, South Korea   总被引:1,自引:0,他引:1  
Using a variety of chemical geothermometers and statistical analysis, we estimate the temperature of a possible deeper geothermal reservoir at Bugok, Southern Korea. Shallow thermal aquifers (down to about 400 m depth) are under exploitation in this area; the temperatures (up to 78 °C) of the produced fluids are the highest found in South Korea. Based on hydrochemical data and occurrence, the groundwaters at Bugok can be classified under three groups: Na-SO4 thermal groundwaters (CTGW) occurring in the central (about 0.24 km2) part of the area; Ca-HCO3 cold groundwater (SCGW) found in shallow peripheral parts of the CTGW; the intermediate-type groundwater (STGW). The CTGW type is typical of the Bugok thermal waters; they have the highest discharge temperatures and contain very high concentrations of Na (75.1–101.0 mg/L), K (2.9–6.9 mg/L) and SiO2 (62.0–84.5 mg/L) and are rich in sulfates.The major ion composition of the CTGW suggests that these waters are in partial equilibrium with rocks at depth. The application of various alkali-ion geothermometers yields temperature estimates in the 88–198 °C range for the thermal reservoir. Multiple-mineral equilibrium calculations indicate a similar but narrower temperature range (from about 100 to 155 °C). These estimates for CTGW are significantly higher than the measured discharge temperatures. Considering the heat losses occurring during the ascent of the waters, one can infer the presence of a deeper (around 1.8 km) thermal reservoir in the Bugok area that could be developed for district heating or other direct applications of geothermal heat.  相似文献   

11.
In this paper we analyze the main available data related to the geothermal system of Ischia Island, starting from the first geothermal exploration in 1939. Our aim is to define a conceptual model of the geothermal reservoir, according to geological, geochemical, geophysical and stratigraphic data. In recent times, the interest on geothermal exploitation for electricity generation in Italy is rapidly increasing and the Ischia Island is one of the main targets for future geothermal exploitation. Nowadays, one of the main economic resources of the island is the tourism, mainly driven by the famous thermal springs; so, it is crucial to study the possible interaction between geothermal exploitation and thermal spring activities. To this aim, we also analyze the possible disturbance on temperature and pressure in the shallow geothermal reservoir, due to the heat withdrawal for electric production related to small power plant size (1–5 MWe). Such analysis has been performed by using numerical simulations based on a well known thermofluid-dynamical code (TOUGH2®). Obtained results show that such geothermal exploitation generates a perturbation of temperature and pressure field which, however, is confined in a small volume around the well. At shallow level (0–100 m) the exploitation does not produce any appreciable disturbance, and can be made compatible with thermal spring exploitation. Moreover, such results are crucial both for the evaluation of volcanological processes in the island and for the general assessment of geothermal resource sustainability.  相似文献   

12.
About 90 thermal areas in Indonesia are indicated, most of which could be grouped into hyperthermal areas located in active volcanic belts. The thermal manifestations are fumaroles, geysers, hot springs and hot mud-pools with surface temperatures generally at boiling point or more than 70°C. A tentative evaluation has been made of the potential of 54 thermal areas with a view to their further development for electrical power. The successful results of these studies in several thermal areas suggest that these volcanic geothermal systems have a high energy potential of about 13,000 – 14,000 MW.The Kawah Kamojang geothermal field in West Jawa is the first promising attempt at utilizing this geothermal energy for electrical power; a 30 MW geothermal power plant has already been installed, and a further 3 units totalling 165 MW are planned.  相似文献   

13.
The Latera and Torre Alfina geothermal fields were discovered in the Vulsini Mts district (central Italy) in the 70s. The fluid produced by the two geothermal systems is a high pCO2 (around 7 MPa) sodium chloride solution (T.D.S. is 9200 ppm at Latera and 7800 at Torre Alfina), with high SiO2 and H3BO3 contents. The fluid temperature taken at well bottom is about 155°C at Torre Alfina, whereas at Latera it ranges from 200 to over 350°C. In spite of these temperatures, recorded in producing wells, previous geochemical prospectings using geothermometers in natural thermal manifestations had predicted temperatures no higher than 140°C in all the Vulsini district. This contrasting feature between real temperatures and those evaluated during prospecting is caused by the fast circulation of large amounts of meteoric waters in the aquifer located in the shallow parts of the carbonate reservoir formations, and by the short interaction between the latter and the deep geothermal fluids.In the present study a new geochemical survey on thermal and cold springs, stream samples, as well as natural gas emissions has been carried out. A critical review of the main geothermometers, some considerations about the hydraulic behavior of the reservoir formations, and the cross comparison between NH4+/B ratio, pCO2 and SiO2 content in both cold and thermal waters, have led to the conclusion that in the Vulsini Mts there are no shallow anomalous areas apart from those already discovered at Latera and Torre Alfina.The present method could be successfully applied in other geothermal systems, where the potential reservoir is represented by carbonate formations.  相似文献   

14.
Chemical and isotopic analyses of thermal and nonthermal waters and of gases from springs and fumaroles are used to evaluate the geothermal potential of the Tecuamburro Volcano region, Guatemala. Chemically distinct geothermal surface manifestations generally occur in separate hydrogeologic areas within this 400 km2 region: low-pressure fumaroles with temperatures near local boiling occur at 1470 m elevation in a sulfur mine near the summit of Tecuamburro Volcano; non-boiling acid-sulfate hot springs and mud pots are restricted to the Laguna Ixpaco area, about 5 km NNW of the sulfur mine and 350–400 m lower in elevation; steam-heated and thermal-meteoric waters are found on the flanks of Tecuamburro Volcano and several kilometers to the north in the andesitic highland, where the Infernitos fumarole (97°C at 1180 m) is the primary feature; neutral-chloride hot springs discharge along Rio Los Esclavos, principally near Colmenares at 490 m elevation, about 8–10 km SE of Infernitos. Maximum geothermometer temperatures calculated from Colmenares neutral-chloride spring compositions are 180°C, whereas maximum subsurface temperatures based on Laguna Ixpaco gas compositions are 310°C. An exploration core hole drilled to a depth of 808 m about 0.3 km south of Laguna Ixpaco had a bottom-hole temperature of 238°C but did not produce sufficient fluids to confirm or chemically characterize a geothermal reservoir. Hydrogeochemical data combined with regional geologic interpretations indicate that there are probably two hydrothermal-convection systems, which are separated by a major NW-trending structural boundary, the Ixpaco fault. One system with reservoir temperatures near 300°C lies beneath Tecuamburro Volcano and consists of a large vapor zone that feeds steam to the Laguna Ixpaco area, with underlying hot water that flows laterally to feed a small group of warm, chloriderich springs SE of Tecuamburro Volcano. The other system is located beneath the Infernitos area in the andesitic highland and consists of a lower-temperature (150–190°C) reservoir with a large natural discharge that feeds the Colmenares hot springs.  相似文献   

15.
Exploration for geothermal resources began in Romania in the early 1960s, based on a detailed geological exploration program for hydrocarbon resources that had a capacious budget and enabled the identification of eight geothermal areas. Over 200 wells drilled to depths between 800 and 3500 m have indicated the presence of low-enthalpy geothermal resources (40–120 °C). Completion and experimental production from over 100 wells during the past 25 years has led to the evaluation of the exploitable heat resources of the geothermal reservoirs. The proven reserves, with the wells that have already been drilled, amount to about 200,000 TJ for 20 years. The main geothermal systems discovered on Romanian territory are in porous permeable formations such as sandstones and siltstones (Western Plain and the Olt Valley) or in fractured carbonate formations (Oradea, Bors, and north of Bucharest). The total thermal capacity of the existing wells is about 480 MWt (for a reference temperature of 25 °C). Only 152 MWt of this potential is currently being exploited, from 96 wells (35 of which are used for health and recreational bathing), producing hot water in the temperature range 45–115 °C. In 2002 the annual energy utilisation from these wells was about 2900 TJ, with a capacity factor of 0.6. More than 80% of the wells are artesian producers, 18 wells require anti-scaling chemical treatment and six are reinjection wells. During the period 1995–2002, 15 exploration-production geothermal wells were drilled and completed, two of which were dry holes. Drilling was financed by the geological exploration fund of the State Budget, to depths varying between 1500 and 3500 m. Progress in the direct utilisation sector of geothermal resources has been extremely slow because of the difficulties encountered during the transition period from a centrally planned to a free-market economy; geothermal production is at present far below the level that could be expected from its assessed potential, with geothermal operations lagging behind in technology. The main obstacle to geothermal development in Romania is the lack of domestic investment capital. In order to stimulate the interest of potential investors from developed countries and to comply with the requirements of the large international banks, an adequate legal and institutional framework has been created, adapted to a market-oriented economy.  相似文献   

16.
The Iceland Deep Drilling Project (IDDP) is a long-term program to improve the economics of geothermal energy by producing supercritical hydrous fluids from drillable depths. Producing supercritical fluids will require the drilling of wells and the sampling of fluids and rocks to depths of 3.5–5 km, and at temperatures of 450–600 °C. The IDDP plans to drill and test a series of such deep boreholes in the Krafla, Nesjavellir and Reykjanes geothermal fields in Iceland. Beneath these three developed high-temperature systems frequent seismic activity continues below 5 km, indicating that, even at supercritical temperatures, the rocks are brittle and therefore likely to be permeable, even where the temperature is assumed to exceed 550–650 °C. Temperature gradients are greater and fluid salinities smaller at Nesjavellir and Krafla than at Reykjanes. However, an active drilling program is underway at Reykjanes to expand the existing generating capacity and the field operator has offered to make available one of a number of 2.5 km deep wells to be the first to be deepened to 5 km by the IDDP. In addition to its potential economic significance, drilling deep at this location, on the landward extension of the Mid-Atlantic Ridge, is of great interest to the international science community. This paper examines the prospect of producing geothermal fluids from deep wells drilled into a reservoir at supercritical temperatures and pressures. Since fluids drawn from a depth of 4000–5000 m may prove to be chemically hostile, the wellbore and casing must be protected while the fluid properties are being evaluated. This will be achieved by extracting the fluids through a narrow retrievable liner called the “pipe”. Modelling indicates that if the wellhead enthalpy is to exceed that of conventionally produced geothermal steam, the reservoir temperature must be higher than 450 °C. A deep well producing 0.67 m3/s steam (2400 m3/h) from a reservoir with a temperature significantly above 450 °C could, under favourable conditions, yield enough high-enthalpy steam to generate 40–50 MW of electric power. This exceeds by an order of magnitude the power typically obtained from a conventional geothermal well in Iceland. The aim of the IDDP is to determine whether utilization of heat from such an unconventional geothermal resource at supercritical conditions will lead to increased productivity of wells at a competitive cost. If the IDDP is an economic success, this same approach could be applied in other high-temperature volcanic geothermal systems elsewhere, an important step in enhancing the geothermal industry worldwide.  相似文献   

17.
There are more than 660 thermal springs in West Yunnan Province, 30 of which are high-temperature hydrothermal systems with reservoir temperatures above 150°C.All thermal springs in West Yunnan are under the control of the tectonics, most of them being distributed at anticlinoria of metamorphic rocks and granites. This paper discusses the relationship between thermal areas and tectonics, the correlation between thermal springs in West Yunnan and North Thailand, and the geothermal prospects in West Yunnan.  相似文献   

18.
The geothermal resources discovered in India consist of warm/hot water systems. Medium-temperature waters and reversal of temperature at depth were observed in Puga, Manikaran and the West Coast geothermal areas after exploratory drilling. Such resources can be utilized only for non-electrical applications after detailed technical—economic feasibility studies. The presence of medium-temperature (90–140°C) springs in the cold, remote and steep Himalayan terrains and of lower temperature springs (100°C) in the hot and variable climate of the Peninsular and Coastal regions further restrict full utilization of these resources, with the exception of Cambay, West Coast and Tatapani—Jhor areas. After careful study a list of direct utilizations is proposed for future consideration and the development of the main geothermal resources in India.  相似文献   

19.
The low-enthalpy geothermal system at Punta Banda (NW Baja California Peninsula, Mexico) has been studied because it might provide heat to future desalination plants in the city of Ensenada. Utilization of subaerial, intertidal and submarine hot springs is evaluated based on geochemical and geophysical data. The results of the geochemical studies show that the geothermal fluids have a major meteoric water component because seawater is not present at the subaerial springs and hot wells. The highest estimated reservoir temperature (140 °C) calculated using a silica geothermometer corresponds to the Agua Caliente intertidal manifestation, a promising area also identified by geophysics. Geothermometric calculations applied to the computed composition of the thermal end member yield a reservoir temperature of 137 °C. Cl/B ratios indicate that the thermal fluids discharged by the intertidal vents and subaerial springs are similar, but they differ from those of submarine vents. Geoelectrical models depict an anomalous conductive trend from the La Jolla well to the Agua Caliente manifestation, suggesting the presence of a fault that allows upflow of hot water from depth. Lastly, integration of geochemical and geophysical data identified the best site for future exploration drilling at Punta Banda.  相似文献   

20.
The parent geothermal water proposed for the Chachimbiro geothermal area has calculated values of 2250 mg/L Cl and approximately 5 bar PCO2. It comes from a reservoir having an estimated temperature of 225–235 °C, although temperatures somewhat higher than 260 °C may be present at the roots of the system. The geothermal reservoir at Chachimbiro is recharged mainly by meteoric water (about 92%) and secondarily by arc-type magmatic water. Carbon and sulfur isotope data support a magmatic origin for the C and S species entering the geothermal system from below, consistent with indications provided by He isotopes.The thermal springs of Na–Cl to Na–Cl–HCO3 type located in the Chachimbiro area originate through dilution of the parent geothermal water and have reached different degrees of re-equilibration with country rocks at lower temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号