首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We demonstrate that alkylthiol‐capped gold nanoclusters doped into nematic liquid crystals (N‐LCs) with positive dielectric anisotropy give rise to an unprecedented dual alignment mode and electro‐optical response, which has a potential impact on current liquid crystal (LC) display technologies and N‐LC optical‐biosensor design. By fine‐tuning experimental conditions (temperature, electric field, and alignment), N‐LCs doped with gold nanoclusters can be aligned and electrically reoriented either like N‐LCs with a positive dielectric anisotropy in a planar cell or, alternatively, as N‐LCs with a negative dielectric anisotropy in a homeotropic cell, both at lower threshold voltages than the pure N‐LC.  相似文献   

2.
On p. 212, Torsten Hegmann and co‐workers describe nematic liquid crystals (N‐LCs) confined in planar liquid crystal cells after doping with small quantities of gold nanoclusters. These give rise to a dual alignment mode and electro‐optic response (Freedericksz transition). By fine‐tuning of experimental conditions, N‐LCs doped with gold nanoclusters can be electrically reoriented and aligned either like N‐LCs with a positive dielectric anisotropy (used in twisted nematic displays) in a planar cell or alternatively as N‐LCs with a negative dielectric anisotropy (used in large LCD TVs based on the vertical alignment mode). We demonstrate that alkylthiol‐capped gold nanoclusters doped into nematic liquid crystals (N‐LCs) with positive dielectric anisotropy give rise to an unprecedented dual alignment mode and electro‐optical response, which has a potential impact on current liquid crystal (LC) display technologies and N‐LC optical‐biosensor design. By fine‐tuning experimental conditions (temperature, electric field, and alignment), N‐LCs doped with gold nanoclusters can be aligned and electrically reoriented either like N‐LCs with a positive dielectric anisotropy in a planar cell or, alternatively, as N‐LCs with a negative dielectric anisotropy in a homeotropic cell, both at lower threshold voltages than the pure N‐LC.  相似文献   

3.
In this paper we describe methods to control liquid crystal (LC) alignment using plasma discharge on ferroelectric fluoropolymers. Two different plasma modification techniques were investigated: corona discharge and RF plasma in Ar gas. Corona discharge is a proven technique known to reorient the dipoles in poly (vinylidene fluoride) and its copolymers resulting in a strong remnant polarization. The polarization was patterned resulting in preferential LC alignment in selected regions. RF plasma in Ar gas defluorinates the polymer surface leading to planar alignment of positive dielectric anisotropy LCs. The defluorination of the alignment layer also causes low voltage switching of the LC.  相似文献   

4.
The fabrication of transparent, flexible, and optically homogeneous magnetic composites containing ferrite (Fe3O4) nanoparticles, liquid crystals (LCs), and siloxane backbones is reported. The transparent magnets are achieved by covalently bonding LCs to the siloxane backbones and then linking them to dopamine‐functionalized ferrite nanocrystals. They exhibit simultaneous high transparency and strong magnetic properties. A remarkable feature of these films is that the surface morphology of the LC‐attached ferrite films can be tuned by an external magnetic field, demonstrating a striped surface in the direction of the field. We show that the LC‐attached film can act as an alignment layer to orient LCs, enabling the development of LC alignment surfaces on the basis of these nanomagnet–LC polymer composites.  相似文献   

5.
弱锚定条件下平行排列向列液晶盒的一级转变   总被引:1,自引:1,他引:0  
在液晶总自由能中界面锚定能采用修正后的Rapini-Papoular(RP)公式,用严格的数学推导和计算,详细研究了弱锚定条件下平行排列的向列液晶盒在阈值点的弗雷彼里克兹(Freedericksz)转变问题。结果表明,对所研究的液晶盒在一定条件下阈值点的转变可以是一级转变。同时给出了一级转变条件,它与液晶表面参量有关。  相似文献   

6.
Three new photoreactive brush polyimides (PSPIs), each bearing a different type of chromophore (cinnamoyl (CA), 3‐(2‐furyl)acryloyl (FA), and methacryloyl (MA)) in their bristles (i.e., side groups), are successfully synthesized, and are found to produce good‐quality films with smooth surfaces through conventional spin‐casting and drying processes. These PSPI polymers are thermally stable up to 320 °C. This is the first quantitative investigation of the photoaligning and rubbing‐aligning processabilities of PSPI polymer films, and of the abilities of the resultant films to control the orientation and anchoring of liquid‐crystal (LC) molecules. The chromophores of both poly(1‐cinnamoyloxy‐2,4‐phenylene hexafluoroisopropylidenediphthalimide) (6F‐DAP‐CA) and poly(1‐3‐(2‐furyl)acryloyloxy‐2,4‐phenylene hexafluoroisopropylidenediphthalimide) (6F‐DAP‐FA) PSPIs are found to undergo photodimerization in thin films and, to a lesser extent, photoisomerization, resulting in insoluble, crosslinked films. The MA chromophores of 6F‐DAP‐MA PSPI are found to undergo photopolymerization in thin films, which might include photodimerization to a lesser extent, resulting in insoluble, crosslinked films. Thin films of the PSPI polymer chains are found to have excellent unidirectional orientation ability as a result of either photoexposure with linearly polarized UV light (LPUVL) or rubbing. Both the photoaligned and the rubbing‐aligned polymer chains in the PSPI films are demonstrated to effectively induce the alignment of nematic LCs along their orientation directors by anisotropic interactions between the preferentially oriented polymer chain segments and the LCs. The contribution to LC alignment of the microgrooves developed in the rubbed films is found to be very low. The anchoring energies of the LCs on the photoaligned film surfaces are comparable to those on the rubbing‐aligned film surfaces; the anchoring energies are found to be in the range 0.45–2.25 × 10–5 J m–2, and to depend on which film treatment process is used and which chromophore bristle is present. In summary, the new PSPIs reported in this paper are promising LC alignment‐layer candidates with rubbing‐free processing for the production of advanced LC‐display (LCD) devices, including LCD televisions with large display areas.  相似文献   

7.
A vertical‐alignment (VA) cell of nematic liquid crystals (LCs) was prepared using photoirradiated thin films of a poly(methacrylate) with mesogenic moieties of 4‐trifluoromethoxyazobenzene as the side chains. Optical anisotropy was generated by oblique irradiation of the azobenzene‐containing polymer films with non‐polarized UV light, followed by annealing treatment to enhance the photodichroism, which displayed thermal stability. The combination of oblique exposure to non‐polarized UV light and subsequent annealing treatment brought about high pretilt angles of nematic LCs so that a photoaligned VA LC cell was fabricated. The photopatterned LC cell exhibited electro‐optical properties with excellent optical quality when a voltage was applied even after heating at 100 °C for several hours.  相似文献   

8.
在受等离子辐照过的一些有机和无机的基板上,获得了高质量的液晶共面取向。与已知的用来改善顶部锚定及预倾角各向同性的等离子处理方法不同,新方法是将等离子束调整到倾斜射向待取向的基板。在所用的辐射参数范围内,所有基板上的LC取向的易取向轴(easy axis)都平行于等离子体传播方向。研究了LC的预倾角和锚定能与等离子束的入射角、辐照时间、能量以及辐照电流密度等的依赖关系。经等离子处理过的基板上,方位角、锚定能与用光取向方法得到的相近,而预倾角与摩擦产生的类似。透过率-电压曲线与等离子处理的和摩擦工艺处理的非常接近。与摩擦取向相同,等离子诱导的取向具有很高的温度和光照的稳定性。也考虑了采用等离子/偏振紫外光和等离子/摩擦处理等组合方法来制作LC图形。  相似文献   

9.
Liquid crystal (LC) photo-alignment using azo-dyes is reviewed. This alignment method is very different from previously reported ones, which are due to mechanisms such as photo-crosslinking, photo degradation, and photo-isomerization. We present the basic physical mechanisms of the photo-induced orientational order in various photo-aligning materials and in azo-dye layers in particular. This method is based on rotational diffusion in a potential created by the light field as well as intermolecular forces. It will be shown that this photo-aligning method can provide a controllable pretilt angle and strong anchoring energy of the LC cell, as well as having high thermal and ultraviolet (UV) stability. The application of this method to the alignment and fabrication of various types of LC displays is also discussed.  相似文献   

10.
We demonstrate a liquid crystal alignment layer with controllable polar and azimuthal anchoring energies. This alignment layer is based on a nanostructured surface formed by mixing a conventional polyimide and a nonaligning polymer. By using this variable anchoring alignment layer, large cell gap bistable twisted nematic LCD requiring asymmetric anchoring can be fabricated.  相似文献   

11.
We have developed a high performance liquid crystal (LC) alignment layer of ultra‐thin single wall carbon nanotubes (SWNTs) and a conjugated block copolymer nanocomposite that is solution‐processible for conventional twisted nematic (TN) LC cells. The alignment layer is based on the non‐destructive solution dispersion of nanotubes with a poly(styrene‐b‐ paraphenylene) (PS‐b‐PPP) copolymer and subsequent spin coating, followed by conventional rubbing without a post‐annealing process. Topographically grooved nanocomposite films with two dimensionally (2D) networked SWNTs embedded in a block copolymer matrix were created using a rubbing process in which bundles of SWNTs on the composite surface were effectively removed. The LCs were well aligned with a stable pre‐tilt angle of approximately 2° on our extremely transparent nanocomposite, which gave rise to superfast switching of the TN LC molecules that was approximately 3.8 ms, or four times faster than that on a commercial polyimide layer. Furthermore, the TN LCD cells containing our SWNT nanocomposite alignment layers exhibited low power operation at an effective switching voltage amplitude of approximately 1.3 V without capacitance hysteresis.  相似文献   

12.
光控取向弱锚定表面的液晶分子排列   总被引:10,自引:10,他引:0  
研究了光敏聚酰亚胺PI(BTDA-TMMDA)用于液晶取向时的弱锚定边界特性。实验测得了两基板皆为摩擦取向层扭曲向列液晶显示器件(DR-TN-LCD)及两基板皆为光控取向层的扭曲向列液晶显示器件(DLPP-TN-LCD)的电光特性和时间响应特性曲线。研究了液晶排列的稳定性,讨论了液晶分子在光控取向弱锚定表面上的排列机理。  相似文献   

13.
Computational chemistry‐guided designs of chemoresponsive liquid crystals (LCs) with pyridine or pyrimidine groups that bind to metal‐cation‐functionalized surfaces to provide improved selective responses to targeted vapor species (dimethylmethylphosphonate (DMMP)) over nontargeted species (water) are reported. The LC designs against experiments are tested by synthesizing 4‐(4‐pentyl‐phenyl)‐pyridine and 5‐(4‐pentyl‐phenyl)‐pyrimidine and quantifying LC responses to DMMP and water. Consistent with the computations, pyridine‐containing LCs bind to metal‐cation‐functionalized surfaces too strongly to permit a response to either DMMP or water whereas pyrimidine‐containing LCs undergo a surface‐driven orientational transition in response to DMMP without interference from water. The computation predictions are not strongly dependent on assumptions regarding the degree of coordination of the metal ions but are limited in their ability to predict LC responses when using cations with mostly empty d orbitals. Overall, this work identifies a promising new class of chemoresponsive LCs based on pyrimidine that exhibits enhanced tolerance to water, a result that is important because water is a ubiquitous and particularly challenging chemical interferent in chemical sensing strategies based on LCs. The work also provides further evidence of the transformative utility of computational chemistry methods to design LC materials that exhibit selective orientational responses in specific chemical environments.  相似文献   

14.
摩擦强度对取向膜表面液晶取向度的影响   总被引:2,自引:1,他引:1  
利用红外二向色性吸收实验,定量分析了不同摩擦强度的取向处理后取向膜表面的液晶分子取向度。实验结果表明,取向膜表面的液晶分子取向度随摩擦强度的增加而增加,最后达到饱和。取向膜表面的液晶分子取向度饱和值仍低于体内部,大约为体内部的1/2。液晶界面层的厚度不随摩擦强度变化,均为7nm左右,此值具有分子相干长度的物理意义。  相似文献   

15.
开发了一种新的双向取向表面。所述取向表面可以用于控制液晶引流(backflow)方向。基于所述新型取向层,成功制造了一种双稳态扭曲向列相LCD,该LCD在U和T态之间转换,不伴随表面锚泊能的破坏(surface anchoring energy breaking)。  相似文献   

16.
An optically resolvable and thermally chiral‐switchable device for circularly polarized luminescence (CPL) is first constructed using a light‐emitting conjugated polymer film and a double‐layered chiral nematic liquid crystal (N*‐LC) cell. The double‐layered N*‐LC cell with opposite handedness at each layer is fabricated by adding each of two types of N*‐LCs into each of the cells, and the N*‐LCs consist of nematic LCs and chiral dopants with opposite chirality and different mole concentrations. The selective reflection band due to the N*‐LC is thermally shifted so that the band wavelength is close to the luminescence band of the racemic conjugated polymer, such as disubstituted polyacetylene (diPA), yielding CPL with opposite handedness and high dissymmetry factor values (|glum|) of 1.1–1.6 at low and high temperatures. The double‐layered N*‐LC cell bearing the temperature‐controlled selective reflection is useful for generating CPLs from racemic fluorescent materials and for allowing thermal chirality‐switching in CPLs, which present new possibilities for optoelectronic and photochemical applications.  相似文献   

17.
We have developed a liquid crystal (LC) device that is totally controlled using light. The initial alignment is made by optically buffing the azopolymer film with two coherent argon laser beams. Surface relief gratings have been optically induced on an assembled cell filled with LC. A single linearly polarized argon laser beam is then employed to irradiate the sample and photoinduce a twisted alignment structure. This can then be erased by a circularly polarized beam. The alignment information can also be erased by heating to the glass transition temperature of the azopolymer film  相似文献   

18.
马悦  张翔  曾龙 《液晶与显示》2019,34(4):342-346
在负性液晶里加活性单体聚合物经过两次UV制程,制得IPS-RM LCD,通过AOI光学自动检测设备以及DMS光学测量等对获得样品的预倾角、对比度、穿透率进行了测量,并研究了负性液晶加RM后的信赖性。结果表明:加RM后预倾角变小,其暗态亮度降低,对比度提高;经过两次UV光照,RM完全聚合,在配向层表面形成小颗粒聚合物,使液晶配向更加均匀,并得到更强的锚定能,电压保持率提升,直流电压残余降低。  相似文献   

19.
We report that the supramolecular liquid-crystal (LC) physical gel can be formed through the fibrous self-assembly of the polyfluorene-based π-conjugated polymer, poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT), in twisted nematic LC system for the first time. With the utility of alignment layers, the F8BT molecules can be aligned and formed the LC physical gels with the formation of self-assembled supramolecular structures in the twisted nematic LCs. In contrast to conventional LC physical gels, the presence of anisotropic π-conjugated structure makes the twisted nematic LC system exhibit excellent electro-optical properties of driving voltage reduction and contrast ratio enhancement owing to the conjugated polymer having a high π-electron delocalization degree which can efficiently drive LC molecules in much lower operating voltages. The self-assembled supramolecular network has revealed the potential for applying in various LC display devices with the ability of improving their electro-optical performance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号