首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Spectrum, IEEE》2005,42(1):40-45
This paper describes Applied Material's wafer polishing technology, called electrochemical mechanical planarization (ECMP). ECMP is the answer to the problems of electropolishing and chemical mechanical planarization (CMP) of the chip-making process: manufacturing faster, more powerful chips without obliterating their vanishing fine and increasingly fragile features. It is designed to remove excess copper from the top of a newly formed layer of wiring on a chip without damaging the fragile insulation material, called a dielectric, beneath it. ECMP combines aspects of two other technologies, chemical mechanical planarization (CMP) and electropolishing.  相似文献   

2.
ULSI制造中Cu的电化学机械抛光   总被引:1,自引:0,他引:1  
电化学机械抛光(ECMP)技术可以在低压力下进行,有可能替代化学机械抛光(CMP)技术,满足含易碎、低介电常数材料的小尺寸特征结构的ULSI中Cu的抛光要求。利用自制的抛光液和改装的抛光机对晶圆片和图案晶圆片上的Cu进行电化学机械抛光,研究了抛光电压、抛光台转速、抛光压力和抛光液流量对抛光速率的影响,发现在抛光电压为4.7V、流量为150~200mL/min、抛光台转速为30~40r/min、抛光压力为3.45kPa时能达到较好的抛光速率。考察了抛光电压对图案晶圆片上台阶高度减小效率的影响,发现台阶高度减小效率随抛光电压增大而减小,并且对抛光机理做了初步分析。  相似文献   

3.
新型铜互连方法——电化学机械抛光技术研究进展   总被引:1,自引:0,他引:1  
多孔低介电常数的介质引入硅半导体器件给传统的化学机械抛光(CMP)技术带来了巨大的挑战,低k介质的脆弱性难以承受传统CMP技术所施加的机械力.一种结合了电化学和机械平坦化技术的新颖铜平坦化工艺--电化学机械抛光(ECMP)应运而生,ECMP在很低的压力下实现了对铜的平坦化,解决了多孔低介电常数介质的平坦化问题,被誉为未来半导体平坦化技术的发展趋势之一.主要综述了电化学机械抛光技术的产生、原理、研究进展和展望,对铜的ECMP技术进行了回顾和讨论.  相似文献   

4.
300mm铜膜低压CMP速率及一致性   总被引:2,自引:1,他引:1  
随着铜互连结构中低k介质的应用,要求CMP抛光过程中必须将压力减小到6.89 kPa以下,传统的化学机械抛光已不符合当前的工艺要求,如何兼顾超低压力下抛光速率和速率一致性成为关键问题.对300 mm Blanket铜膜进行了低压化学机械抛光实验,分析研究了碱性抛光液组分及抛光工艺参数对铜膜去除速率及其一致性的影响.通过...  相似文献   

5.
It is well known that within-wafer nonuniformity (WIWNU) due to the variation in material removal rate (MRR) in chemical mechanical polishing (CMP) significantly affects the yield of good dies. The process control for a batch CMP operation is further complicated by wafer-to-wafer nonuniformity (WTWNU) caused by MRR decay when a number of wafers are polished with the same unconditioned pad. Accordingly, the present work focuses on modeling the WIWNU and WTWNU in CMP processes. Various material removal models suggest that the MRR is strongly influenced by the interface pressure. It is also well known that the viscoelastic properties of the pad play an important role in CMP. In the present work, an analytical expression for pressure distribution (and its associated MRR) at the wafer-pad interface for a viscoelastic pad is developed. It is observed that under constant load, which is typical during main polishing in CMP, the spatial distribution of the interface pressure profile may change with time from edge-slow to edge-fast, depending on the combination of wafer curvature, down pressure, and pad properties. For constant displacement operations, the pressure profile retains its edge-slow or edge-fast characteristics over time. The analytical model predictions of MRR based on viscoelastic pad properties also correlate very well to existing experimental observations of MRR decay when an unconditioned pad is used to polish a number of wafers. Based on these observations, it may be conjectured that the viscoelastic material properties of the pad play a primary role in causing the observed MRR decay. The analytical results obtained in the present work can also provide an estimation of evolution of thickness removal distribution over the entire wafer. This may be used for determining the optimum thickness of the overburden material and its polishing time, and for effective control of CMP processes.  相似文献   

6.
Inverse analysis of material removal data using a multiscale CMP model   总被引:1,自引:0,他引:1  
This paper describes a mechanical model for a representative dual axis rotational chemical mechanical planarization (CMP) tool. The model is three-dimensional, multiscale and includes sub-models for bulk pad deformation, asperity deformation, lubrication based slurry flow, carrier film deformation, wafer compliance and material removal by abrasive particles in the slurry. With the model, material removal rate (MRR) can be determined as a function of stress applied to the wafer, relative sliding speed, and material and geometric parameters of the pad and slurry. Experimental material removal rate profiles obtained from Cu polishing experiments performed on a wafer without rotation are analyzed as an inverse problem. We use MRR data to predict local CMP conditions such as fluid film thickness, fluid pressure and contact pressure. The results are consistent with available experimental and analytical information. This inverse technique offers promise as an improved method of CMP model verification.  相似文献   

7.
Recently, electrochemical-mechanical polishing (ECMP) has been suggested as an alternative to the conventional chemical-mechanical polishing (CMP) process. In ECMP process, copper (Cu) ions are electrochemically dissolved by applying an anodic potential to the Cu surface in an electrolyte. In this paper, the voltage-activated electrochemical reactions of Cu for ECMP application were investigated with different concentration of HNO3 electrolyte. The electrochemical characteristics of Cu such as active, passive, transient and trans-passive state were evaluated from its current-voltage (I-V) curve obtained by linear sweep voltammetry (LSV) and cyclic voltammetry (CV) method. The proposed mechanism and analyses were a good methodology in finding suitable electrochemical process parameter for ECMP application.  相似文献   

8.
The trend toward finer pitch and higher performance devices has driven the semiconductor industry to incorporate copper and low-k dielectric materials. Compared to the commonly used aluminum metallization scheme on the traditional silicon dioxide and/or silicon nitride passivation, a Cu/low-k combination offers higher on-chip communication speed and a lower overall device cost. However, the process of packaging Cu/low-k devices has been proven to be difficult, relying either on additional lithography and deposition steps or on costly new process tools. Thus, this paper presents a novel methodology to bond fine pitch Au wire directly onto the Cu/low-k pad structure using the industry standard tool set. A Cu/low-k test vehicle is designed with the required slotted low-k fillings for dual damascene chemical mechanical polishing (CMP) process need. In addition, a thin organic passivation film is developed for coating the exposed Cu/low-k pad temporarily from copper oxidation and to provide a wirebondable surface to form the proper interconnects. A design of experiment is performed to optimize wirebonding parameters [power, time, and ultrasonic gauge (USG) bleed], along with key physical contributors from wafer sawing and die attaching steps that impact the interconnect shear strength and quality. In addition, electrical and optical characterization and surface failure analysis are performed to confirm the feasibility of the technology. Finally, reliability results of the pad structure design and recommendations for further process optimization are presented.  相似文献   

9.
Cu CMP过程中背压对膜厚一致性影响   总被引:1,自引:0,他引:1  
在极大规模集成电路Cu布线的化学机械平坦化过程中,抛光后表面薄膜厚度的一致性是检验平坦化能力的重要参数。从抛光过程中晶圆所受背压方面着手,研究了在不同背压参数情况下抛光后表面薄膜的一致性,得出了在工作压力为103 mdaN/cm2(1 kPa=10 mdaN/cm2)时,最佳的背压参数为108 mdaN/cm2。采用此工艺参数进行抛光后得到的晶圆表面薄膜非均匀性为5.04%,即一致性可以达到94.96%,而且此时表面粗糙度为0.209 nm,从而得到了良好的抛光效果,为极大规模集成电路Cu布线化学机械平坦化的进一步发展提供了新的途径。  相似文献   

10.
The mechanical response at the interface between the silicon, low-k and copper layer of the wafer is simulated herein under the loading of the chemical-mechanical polishing (CMP). To identify the possible generation/propagation of the initial crack, the warpage induced by the thin-film fabrication process are considered, and applying pressure, status of slurry and the copper thickness are treated as the parameter in the simulation. Both the simulation and experimental results indicate that the large blanket wafer within high applying pressure would exhibit high stresses possible to delaminate the interface at the periphery of the wafer, and reducing the copper thickness can diminish the possibility of the delamination/failure of the low-k material.  相似文献   

11.
研究了阴离子表面活性剂十二烷基硫酸铵(ADS)在弱碱性铜抛光液中对晶圆平坦化效果的影响.对不同质量分数的阴离子表面活性剂ADS下的抛光液表面张力、铜去除速率、抛光后铜膜的碟形坑高度、晶圆片内非均匀性和表面粗糙度进行了测试.实验结果表明,当阴离子表面活性剂ADS的质量分数为0.2%时,抛光液的表面张力降低,铜的去除速率为202.5 nm·min-1,去除速率片内非均匀性减小到4.15%,抛光后铜膜的碟形坑高度从132 nm降低到68.9 nm,表面粗糙度减小到1.06 nm.与未添加表面活性剂相比,晶圆表面的平坦化效果得到改善.  相似文献   

12.
Many researchers studying copper chemical mechanical planarization (CMP) have been focused on mechanisms of copper removal using various chemicals. On the basis of these previous works, we studied the effect of slurry components on uniformity. Chemical mechanical planarization of copper was performed using citric acid (C6H8O7), hydrogen peroxide (H2O2), colloidal silica, and benzotriazole (BTA, C6H4N3H) as a complexing agent, an oxidizer, an abrasive, and a corrosion inhibitor, respectively. As citric acid was added to copper CMP slurry (pH 4) containing 3 vol% hydrogen peroxide and 3 wt% colloidal silica, the material removal (MRR) at the wafer center was higher than its edge. Hydrogen peroxide could not induce a remarkable change in the profile of MRR. Colloidal silica, used as an abrasive in copper CMP slurry containing 0.01 M of citric acid and 3 vol% of hydrogen peroxide, controlled the profile of MRR by abrading the wafer edge. BTA as a corrosion inhibitor decreased the MRR and seems to control the material removal around the wafer center. All the results of in this study showed that the MRR profile of copper CMP could be controlled by the contents of slurry components.  相似文献   

13.
It is well known that within wafer non-uniformity (WIWNU), due to the variation in material, removal rate (MRR) in the whole wafer plays an important role in determining the quality of a wafer planarized by CMP. Various material removal models also suggest that the MRR is strongly influenced by the interface pressure. In the present work, an analytical expression for pressure distribution at the wafer and pad interface is developed. It is observed that depending on the wafer curvature and polishing conditions, the interface pressure may exhibit significant variation. The analytical model predictions are first verified against finite element method (FEM) simulations. The predicted analytical pressure profiles are then utilized in Preston's equation to estimate the MRR, and these MRR predictions are also compared to experimental observations. The analytical results suggest, that for a specified wafer curvature there exists a certain polishing condition (and vice versa) that will enable holding the WIWNU within a specified tolerance band. The proposed model facilitates the design space exploration for such optimal polishing conditions.  相似文献   

14.
不含抑制剂的碱性抛光液对铜布线平坦化的研究   总被引:6,自引:6,他引:0  
本文提出一种碱性铜布线抛光液,其不含通用的腐蚀抑制剂,并对其化学机械抛光和平坦化 (CMP)性能进行了研究。首先研究了此抛光液对铜的静态腐蚀速率和抛光速率,并与含抑制 剂的铜抛光液做了对比实验。在静态条件下,此不含抑制剂的碱性铜抛光液对铜基本无腐蚀速率,而在动态抛光过程中对铜有较高的速率。而含抑制剂的抛光液对静态腐蚀速率略有降低,但是却大幅度降低了铜的去除速率。另外,对铜布线的化学机械平坦化研究表明,此不含抑制剂的碱性铜抛光液能够有效的去除铜布线表面的高低差,有较高的平坦化能力。此抛光液能够应用于铜CMP的第一步抛光,能够去除大量多余铜时初步实现平坦化。  相似文献   

15.
In this paper, we summarize the development of a numerical model for the chemical mechanical planarization (CMP) process and experimentally investigate the effects of pad conditioning on slurry transport and mixing. A simplified two-dimensional numerical model of slurry flow beneath a stationary wafer was developed to determine the pressure and shear stress beneath a wafer. The initial results indicate that in the hydrodynamic regime a positive upward pressure is exerted on the wafer. We also examined three cases to study pad effects on slurry transport; polishing with an Embossed Politex pad, an unconditioned IC1000 pad, and a conditioned IC1000 pad. Cab-O-Sperse SC1 slurry was used in a 1:1.5 dilution with water. Mixing data show that conditioning has a negligible effect on the rate of slurry entrainment and mixing; however, conditioning has a large effect on the thickness of the slurry layer between the wafer and pad. Conditioning was found to increase the slurry thickness by a factor of two. In addition the gradients in slurry age beneath the wafer were compared among the three cases. The IC1000 pads supported a gradient in the inner third of the wafer only, while the Embossed Politex pad showed a linear gradient across the wafer implying it retains pockets of unmixed slurry in the embossed topography.  相似文献   

16.
化学机械平坦化(CMP)过程中,抛光液的化学作用对平坦化效果起着不可替代的作用。介绍了碱性抛光液中氧化剂(H2O2)对铜布线CMP的作用:H2O2对铜的强氧化性可以将铜氧化为离子状态,然后在螯合剂的螯合作用下快速去除铜膜;H2O2对铜的钝化作用可以保护凹处铜膜不被快速去除,从而有效降低高低差。此外,还研究了碱性抛光液中不同H2O2浓度对铜的静态腐蚀速率、动态去除速率及铜布线平坦化结果的影响。研究表明:抛光液对铜的静态腐蚀速率随H2O2浓度的增大逐渐降低然后趋于饱和;铜的动态去除速率随H2O2浓度的增大而逐渐降低;抛光液的平坦化能力随H2O2浓度的增大逐渐增强再趋于稳定。  相似文献   

17.
适宜的抛光工艺参数对Si片表面平整度TTV、TIR、STIR等参数起到至关重要的作用.介绍了化学机械抛光(CMP)有效实现Si片全局和局部平坦化的方法和设施,指出并说明CMP是一种化学作用和机械作用相结合的技术,给出了其影响因素.利用DOE(design of experiment)实验方法,结合实际生产条件,获得并验证了最优化的生产工艺参数,改善了Si片表面平整度.  相似文献   

18.
以p型111硅片为衬底,经过旋涂固化制备低介电常数(低k)材料聚酰亚胺。经过化学机械抛光(CMP)过程,考察实验前后低k材料介电性能的变化。实验中分别使用阻挡层抛光液、Cu抛光液以及新型抛光液对低k材料进行抛光后,利用电参数仪对低k材料进行电性能测试。结果显示,低k材料介电常数经pH值为7.09新型抛光液抛光后,k值由2.8变为2.895,漏电流在3.35 pA以下,去除速率为59 nm/min。经新型抛光液抛光后的低k材料,在电学性能等方面均优于阻挡层抛光液和Cu抛光液,抛光后的低k材料的性能能够满足应用要求。  相似文献   

19.
We propose the action mechanism of Cu chemical mechanical planarization(CMP) in an alkaline solution.Meanwhile,the effect of abrasive mass fraction on the copper removal rate and within wafer non-uniformity(WIWNU) have been researched.In addition,we have also investigated the synergistic effect between the applied pressure and the FA/O chelating agent on the copper removal rate and WIWNU in the CMP process.Based on the experimental results,we chose several concentrations of the FA/O chelating agent,which added in the slurry can obtain a relatively high removal rate and a low WIWNU after polishing,to investigate the planarization performance of the copper slurry under different applied pressure conditions.The results demonstrate that the copper removal rate can reach 6125 °/min when the abrasive concentration is 3 wt.%.From the planarization experimental results,we can see that the residual step height is 562 ° after excessive copper of the wafer surface is eliminated.It denotes that a good polishing result is acquired when the FA/O chelating agent concentration and applied pressure are fixed at 3 vol% and 1 psi,respectively.All the results set forth here are very valuable for the research and development of alkaline slurry.  相似文献   

20.
在阻挡层的化学机械平坦化(CMP)过程中,Cu与阻挡层去除速率的一致性是保证平坦化的关键问题之一。低k介质材料的引入要求阻挡层在低压力下用弱碱性抛光液进行CMP,这给抛光液对不同材料的选择性提出了新的挑战。研究了低压2 psi,(1 psi=6.89 kPa)CMP条件下,磷酸和酒石酸作为阻挡层抛光液pH调节剂对Cu和Ta的络合作用。实验结果表明,酒石酸对Cu和Ta有一定的络合作用,能够提高它们的去除速率;磷酸能提高Ta的去除速率,而对Cu的去除有抑制作用。最终在加入磷酸浓度为2×10-2mol/L,酒石酸浓度为1×10-2mol/L,H2O2体积分数为0.3%,pH=8.5时,Cu/Ta/SiO2介质的去除速率选择比达到了1∶1∶1,去除速率约为58 nm/min;同时,磷酸和酒石酸的加入能够有效改善Cu的表面状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号