首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
锂二次电池作为动力电池,被寄予厚望。但锂二次电池面临的安全隐患也是不容忽视的,是当前亟需解决的问题,而这与电解质的性质有着紧密的联系。离子液体由于具有较宽电化学窗口、良好的导电性、高热稳定性、几乎无挥发及不燃烧等优良的特性,正在作为一种新型绿色替代溶剂被电化学领域所关注。离子液体的不燃烧特性,对于替代传统有机电解质具有十分重要的意义。本文阐述了新型溶剂“离子液体”作为电解质在锂二次电池中的应用,其中重点阐述了在碳、硅、钛酸锂(Li4Ti5O12)、磷酸亚铁锂(LiFePO4)、钴酸锂LiCoO2、镍锰酸锂(LiNixMnyOz),镍钴锰锂(LiNixCoyMnzOw)及在锂硫(Li-S)电池中的应用。  相似文献   

2.
Solid-state polymer-silicate nanocomposite electrolytes based on an amorphous polymer poly[(oxyethylene)8 methacrylate], POEM, and lithium montmorillonite clay were fabricated and characterized to investigate the feasibility of their use as ‘salt-free’ electrolytes in lithium polymer batteries. X-ray scattering and transmission electron microscopy studies indicate the formation of an intercalated morphology in the nanocomposites due to favorable interactions between the polymer matrix and the clay. The morphology of the nanocomposite is intricately linked to the amount of silicate in the system. At low clay contents, dynamic rheological testing verifies that silicate incorporation enhances the mechanical properties of POEM, while impedance spectroscopy shows an improvement in electrical properties. With clay content ≥15 wt.%, mechanical properties are further improved but the formation of an apparent superlattice structure correlates with a loss in the electrical properties of the nanocomposite. The use of suitably modified clays in nanocomposites with high clay contents eliminates this superstructure formation, yielding materials with enhanced performance.  相似文献   

3.
Polymer gel electrolytes comprising a sulfur-based ionic liquid (IL), a lithium salt, and butyrolactone (GBL) as an additive hosted in PVdF-HFP matrix were prepared and characterized. The result shows that adding small amount of GBL to the polymer electrolytes can improve the cathodic stability of the electrolytes, which ensures the lithium plating/stripping in the redox process. Furthermore, cyclic voltammograms studies indicate that the polymer electrolytes have well reversible redox process. When the IL component reaches 75 wt%, the polymer electrolyte has higher ionic conductivity than the other samples and it is 6.32 × 10?4 S cm?1. The assembled batteries with the polymer electrolyte have better discharge capacity, and after 100 cycles, the discharge capacity of the battery still retains 148 mAh g?1.  相似文献   

4.
The polymer electrolytes comprising of PVdF-HFP/PVAc/Mg(ClO4)2 as salt based polymer blend electrolytes derived from the addition of varying amounts of 1-ethyl – 3-methylimidazolium trifluoromethane sulfonate [EMITF], as dopant were synthesized in the form of films by solution-casting method. The XRD and FTIR patterns confirm the formation of an amorphous phase and also that complex formation between the polymers, salt and ionic liquid. The SEM images show that the polymer electrolyte exhibit a enormous pores, remarkably, the maximum ionic conductivity is obtained in the case of the typical polymer system I3 is found to be 9.122 × 10?4 Scm?1at 303 K.  相似文献   

5.
Fabrication, characterization, and a comparative study have been performed for chitosan‐based polymer electrolytes using two different dispersion media. Chitosan gel film (solid) electrolytes are fabricated using acetic acid or adipic acid as the dispersant for chitosan in combination with ionic liquid and lithium salt. This quaternary system of chitosan, acetic acid or adipic acid, 1‐butyl‐3‐methylimadazolium tetrafluoroborate (ionic liquid), and lithium chloride is formed as an electrolyte for potential secondary energy storage applications. The ionic conductivities, thermal, structural, and morphological properties for these electrolytes are compared. The ionic conductivities for chitosan/adipic acid (CHAD) and for chitosan/acetic acid (CHAC) systems are in the range of 3.71 × 10−4−4.6 × 10−3 and 1.3 × 10−4 −3.2 × 10−3 S cm−1, respectively. The thermal stability of CHAD‐based electrolytes is determined to be higher than that of CHAC‐based electrolytes. Preliminary studies are performed to determine the electrochemical stability of these materials as solid film electrolytes for electrochemical supercapacitors. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42143.  相似文献   

6.
通过对未来5 a锂离子电池在动力电池、储能电池、数码电池市场的发展情况分析,预测锂离子电池生产的平均增长率将达到26%以上,到2025年对应锂离子电池电解液的需求量和六氟磷酸锂需求量将分别达到93.0万t和10.3万t。分析目前六氟磷酸锂产能情况和后期各生产企业扩产计划,预测六氟磷酸锂产能在2022年以前满足市场需求;若2025年以前各生产企业扩产到位,供需将会达到平衡,并且六氟磷酸锂价格趋于平稳,在原材料价格波动不大的情况下预计其价格在8.5万元/t左右。  相似文献   

7.
Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes   总被引:1,自引:0,他引:1  
The suitability of some single/binary liquid electrolytes and polymer electrolytes with a 1 M solution of LiCF3SO3 was evaluated for discharge capacity and cycle performance of Li/S cells at room temperature. The liquid electrolyte content in the cell was found to have a profound influence on the first discharge capacity and cycle property. The optimum, stable cycle performance at about 450 mAh g−1 was obtained with a medium content (12 μl) of electrolyte. Comparison of cycle performance of cells with tetra(ethylene glycol)dimethyl ether (TEGDME), TEGDME/1,3-dioxolane (DIOX) (1:1, v/v) and 1,2-dimethoxyethane (DME)/di(ethylene glycol)dimethyl ether (DEGDME) (1:1, v/v) showed better results with the mixed electrolytes based on TEGDME. The addition of 5 vol.% of toluene in TEGDME had a remarkable effect of increasing the initial discharge capacity from 386 to 736 mAh g−1 (by >90%) and stabilizing the cycle properties, attributed to the reduced lithium metal interfacial resistance obtained for the system. Polymer electrolyte based on microporous poly(vinylidene fluoride) (PVdF) membrane and TEGDME/DIOX was evaluated for ionic conductivity at room temperature, lithium metal interfacial resistance and cycle performance in room-temperature Li/S cells. A comparison of the liquid electrolyte and polymer electrolyte showed a better performance of the former.  相似文献   

8.
The polymer electrolytes based on a polymerized ionic liquid (PIL) as polymer host and containing 1,2‐dimethyl‐3‐butylimidazolium bis(trifluoromethanesulfonyl)imide (BMMIM‐TFSI) ionic liquid, lithium TFSI salt, and nanosilica are prepared. The PIL electrolyte presents a high ionic conductivity, and it is 1.07 × 10?3 S cm?1 at 60°C, when the BMMIM‐TFSI content reaches 60% (the weight ratio of BMMIM‐TFSI/PIL). Furthermore, the electrolyte exhibits wide electrochemical stability window and good lithium stripping/plating performance. Preliminary battery tests show that Li/LiFePO4 cells with the PIL electrolytes are capable to deliver above 146 mAh g?1 at 60°C with very good capacity retention. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40928.  相似文献   

9.
New functionalized ILs based on quaternary ammonium cations with three or four ether groups and TFSI anion were synthesized and characterized. Physical and electrochemical properties, including melting point, thermal stability, viscosity, conductivity and electrochemical stability were investigated for these ILs. Five ILs with lower viscosity in these ILs were applied in lithium battery as new electrolytes. Behavior of lithium redox and charge–discharge characteristics of lithium battery were investigated for these IL electrolytes with 0.6 mol kg−1 LiTFSI. Lithium plating and striping on Ni electrode could be observed in these IL electrolytes. Li/LiFePO4 cells using these IL electrolytes without additives had good capacity and cycle property at the current rate of 0.1 C, and the N(2o1)3(2o2)TFSI and N2(2o1)3TFSI electrolytes owned better rate property.  相似文献   

10.
A number of redox systems have been investigated in this work with the aim of identifying electrolytes suitable for testing redox flow battery cell designs. The criteria for the selection of suitable systems were fast electrochemical kinetics and minimal cross-contamination of active electrolytes. Possible electrolyte systems were initially selected based on cyclic voltammetry data. Selected systems were then compared by charge/discharge experiments using a simple H-type cell. The all-vanadium electrolyte system has been developed as a commercial system and was used as the starting point in this study. The performance of the all-vanadium system was significantly better than an all-chromium system which has recently been reported. Some metal-organic and organic redox systems have been reported as possible systems for redox flow batteries, with cyclic voltammetry data suggesting that they could offer near reversible kinetics. However, Ru(acac)3 in acetonitrile could only be charged efficiently to 9.5% of theoretical charge, after which irreversible side reactions occurred and [Fe(bpy)3](ClO4)2 in acetonitrile was found to exhibit poor charge/discharge performance.  相似文献   

11.
Thermo-set membranes prepared by free-radical photo-polymerisation (UV-curing) could be an interesting alternative to the existing Li-ion battery polymer electrolytes. UV-curing takes place at room temperature and it is based on initiating a chemical polymerisation inside a liquid poly-functional monomer, containing a proper photo-initiator, using direct UV-irradiation to create a highly cross-linked solid film.The present communication illustrates the results obtained from the investigation of a class of polymeric networks prepared by incorporating siloxane-based monomers into a methacrylic-based polymer matrix. The gel-copolymer membranes were obtained in the form of flexible, easy to handle, translucent films by UV-irradiation of a mixture of monomers in the presence of a radical photo-initiator with the in-situ addition of an EC/DEC solution. The polymer electrolyte was prepared by swelling the obtained membrane in a LiTFSI-EC-DEC solution. The chemical and structural properties were characterised by real-time FT-IR, TGA, DSC, and their surface characteristics were assessed by dynamic contact-angle measurements. Electrochemical tests on ionic conductivity, stability and cyclability in lithium cells pointed out the importance of the co-polymerisation in the presence of siloxane acrylates which improved the interfacial properties of the gel-copolymer membranes. Good values of ionic conductivity were obtained even at ambient temperature.  相似文献   

12.
Electrochemical intercalation/deintercalation behavior of lithium into/from electrodes of lithium ion batteries was comparatively investigated in 1 mol/L LiClO4 ethylene carbonate-diethyl carbonate (EC-DEC) electrolyte and a quaternary ammonium-based ionic liquid electrolyte. The natural graphite anode exhibited satisfactory electrochemical performance in the ionic liquid electrolyte containing 20 vol.% chloroethylenene carbonate (Cl-EC). This is attributed to the mild reduction of solvated Cl-EC molecules at the graphite/ionic electrolyte interface resulting in the formation of a thin and homogenous SEI on the graphite surface. However, rate capability of the graphite anode is poor due to the higher interfacial resistance than that obtained in 1 mol/L LiClO4/EC-DEC organic electrolyte. Spinel LiMn2O4 cathode was also electrochemically cycled in the ionic electrolyte showing satisfactory capacity and reversibility. The ionic electrolyte system is thus promising for 4 V lithium ion batteries based on the concept of “greenness and safety”.  相似文献   

13.
A novel dimeric ionic liquid based on imidazolium cation and bis(trifluoromethanesulfonyl) imide (TFSI) anion has been synthesized through a metathesis reaction. Its chemical shift values and thermal properties are identified via 1H nuclear magnetic resonance (NMR) imaging and differential scanning calorimetry (DSC). The effect of the synthesized dimeric ionic liquid on the interfacial resistance of gel polymer electrolytes is described. Differences in the SEM images of lithium electrodes after lithium deposition with and without the 1,1′-pentyl-bis(2,3-dimethylimidazolium) bis(trifluoromethane-sulfonyl)imide (PDMITFSI) ionic liquid in gel polymer electrolytes are clearly discernible. This occurs because the PDMITFSI ionic liquid with hydrophobic moieties and polar groups modulates lithium deposit pathways onto the lithium metal anode. Moreover, high anodic stability for a gel polymer electrolyte with the PDMITFSI ionic liquid was clearly observed.  相似文献   

14.
Nanofiltration membranes have been developed by interfacial polymerization using base PES ultrafiltration membranes. By varying the concentration of the reactive monomers present as well as the reaction conditions, the structure of the polymerized barrier layer has been modified. Here, the ability to concentrate low molecular weight sugars while allowing dissolved ionic liquids in aqueous solution to be recovered in the permeate has been investigated for application in biomass hydrolysis. The results obtained here indicate that the selectivity for 1-butyl-3-methylimidazoliumchloride (BmimCl) over glucose can be as high as 36.6. The membrane permeance was 2.31 L m?2 h?1 bar?1.  相似文献   

15.
Electrochemical intercalation of lithium into a natural graphite anode was investigated in electrolytes based on a room temperature ionic liquid consisting of trimethyl-n-hexylammonium (TMHA) cation and bis(trifluoromethanesulfone) imide (TFSI) anion. Graphite electrode was less prone to forming effective passivation film in 1 M LiTFSI/TMHA-TFSI ionic electrolyte. Reversible intercalation/de-intercalation of TMHA cations into/from the graphene interlayer was confirmed by using cyclic voltammetry, galvanostatic measurements, and ex situ X-ray diffraction technique. Addition of 20 vol% chloroethylenene carbonate (Cl-EC), ethylene carbonate (EC), vinyl carbonate (VC), or ethylene sulfite (ES) into the ionic electrolyte resulted in the formation of solid electrolyte interface (SEI) film prior to TMHA intercalation and allowed the formation of Li-C6 graphite interlayer compound. In the ionic electrolyte containing 20 vol% Cl-EC, the natural graphite anode exhibited excellent electrochemical behavior with 352.9 mAh/g discharge capacity and 87.1% coulombic efficiency at the first cycle. A stable reversible capacity of around 360 mAh/g was obtained in the initial 20 cycles without any noticeable capacity loss. Mechanisms concerning the significant electrochemical improvement of the graphite anode were discussed. Ac impedance and SEM studies demonstrated the formation of a thin, homogenous, compact and more conductive SEI layer on the graphite electrode surface.  相似文献   

16.
Butyl-Methyl-Morpholinium bis(trifluoromethanesulphonyl)imide [ButMetMor][TFSI] and Ethyl-Methyl-Morpholinum bis(trifluoromethanesulphonyl)imide [EtMetMor][TFSI] and their mixtures with propylene carbonate (PC) were investigated as potential electrolytes in an electrochemical double layer capacitor (EDLC). Temperature dependencies of conductivity and electrochemical stability windows of ionic liquids (ILs) as well as their mixtures were determined. PC mixtures give higher conductivity with maximum ca. 1:4 (IL:PC) molar rate. Temperature dependencies of conductivity follow the Arrhenius type, showing higher energy activation for neat ILs rather than for mixtures. The EDLC was constructed based on activated carbon cloth (ACC, Kynol®) ca. 2000 m2 g?1 and IL:PC mixture giving specific capacitance of ca. 100–120 F g?1.  相似文献   

17.
The comparative performance of conducting polymer electrochromic devices (ECDs) utilising gel polymer electrolytes (GPEs) plasticised with ethylene carbonate/propylene carbonate or (N-butyl-3-methylpyridinium trifluoromethanesulphonylimide (P14TFSI) has been made. Lithium perchlorate and lithium trifluoromethanesulphonylimide salts were used in the GPEs to provide enhanced ionic conductivity and inhibit phase separation of the polyethyleneoxide (PEO) and plasticiser. ECDs were assembled from cathodically colouring, polyethylenedioxythiophene (PEDOT), and anodically colouring, polypyrrole (PPy), conducting polymer electrochromes deposited by vapour deposition. The photopic contrast switching over the visible light spectrum, switching speeds and device stability of the ECDs were obtained. These studies demonstrate that the ionic liquid (IL) plasticised GPEs are a suitable replacement for pure IL based devices and volatile organic solvent plasticisers based upon ethylene carbonate/propylene carbonate mixtures.  相似文献   

18.
Because of its superior safety and excellent processability, solid polymer electrolytes (SPEs) have attracted widespread attention. In lithium based batteries, SPEs have great prospects in replacing leaky and flammable liquid electrolytes. However, the low ionic conductivity of SPEs cannot meet the requirements of high energy density systems, which is also an important obstacle to its practical application. In this respect, escalating charge carriers (i.e. Li+) and Li+ transport paths are two major aspects of improving the ionic conductivity of SPEs. This article reviews recent advances from the two perspectives, and the underlying mechanism of these proposed strategies is discussed, including increasing the Li+ number and optimizing the Li+ transport paths through increasing the types and shortening the distance of Li+ transport path. It is hoped that this article can enlighten profound thinking and open up new ways to improve the ionic conductivity of SPEs.  相似文献   

19.
The Polyvinylpyrrolidone (PVP)-assisted polyol process was employed for the synthesis of lithium manganese phosphate (LiMnPO4) microflowers as a cathode material for Li-ion battery applications. LiMnPO4 microflowers were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope-energy dispersion spectroscope, and impedance spectroscopy. The microflowers were highly porous with nanosized petals. CR2032 coin cells were fabricated using LiMnPO4 microflowers’ sample and their battery characteristics were tested. The discharge capacity of LiMnPO4 microflowers was found to be 164 mAh g−1 at 0.1C. The observed high discharge capacity was attributed to the short diffusion length of Li-ion motion in the nanopetals of the LiMnPO4 microflowers.  相似文献   

20.
We report synthesis, characterization and ion transport in polyether-based ionic melt electrolytes consisting of Li salts of low-basicity anions covalently attached to polyether oligomers. Purity of the materials was investigated by HPLC analysis and electrospray ionization mass spectrometry. The highest ionic conductivity of 7.1 × 10−6 S/cm at 30 °C was obtained for the sample consisting of a lithium salt of an arylfluorosulfonimide anion attached to a polyether oligomer with an ethyleneoxide (EO) to lithium ratio of 12. The conductivity order of various ionic melts having different polyether chain lengths suggests that at higher EO:Li ratios the conductivity of the electrolytes at room temperature is determined in part by the amount of crystallization of the polyether portion of the ionic melt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号