首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
付凤艳  邢广恩 《化工学报》2021,72(Z1):42-52
阴离子交换膜燃料电池(AEMFCs)因其具有环境友好、可使用非贵金属催化剂、电极反应速率快等特点而受到广泛关注。阴离子交换膜(AEMs)是AEMFCs的核心部件,其性质决定着燃料电池的性能、能量效率和使用寿命。从具有不同骨架结构的聚合物出发,介绍了聚苯醚、聚芳醚砜、聚烯烃和聚苯并咪唑等不同聚合物骨架结构的阴离子交换膜的制备、性能和应用,同时对具有不同聚合物骨架结构的阴离子交换膜在应用方面存在的问题及应用前景进行了评论和展望。  相似文献   

3.
A copolymer of 4‐vinylpyridine (4‐VP) and styrene was synthesized by radical mass polymerization using 2,2′‐azobisisobutyronitrile as initiator. An insoluble (linear) pyridinium‐type polymer was prepared by the reaction of P (4VP–St) with 1‐bromooctane. An anion exchange membrane was prepared using a composite of pyridinium‐type polymer and a fibrous woven structure for use in electrochemistry. The composite membrane was characterized by X‐ray diffraction, tensile strength, scanning electron microscopy, and electrochemistry measurements. The experimental results showed that the fibrous woven product had improved the tensile strength more than had the membrane made of a pyridinium‐type polymer alone. The composite membrane was used in alkaline fuel cells, and its properties were measured by electrochemical analysis. The ionic conductivity of the membrane was acceptable, but its performance as a direct methanol fuel cell (DMFC) was not. The primary reason for this was analyzed, and research is ongoing, with analysis to be discussed in later reports. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2248–2251, 2006  相似文献   

4.
Spreading of liquid droplets over solid surfaces is a fundamental process with a number of applications including electro-chemical reactions on catalyst surface in membrane electrode assembly of proton exchange membrane (PEM) fuel cell and direct alcohol fuel cell. The spreading process of droplet on the PEM porous substrate consists of two phenomena, e.g., spreading of droplet on PEM surface and imbibition of droplet into PEM porous substrate. The shrinkage of the droplet base occurs due to the suction of the liquid from the droplet into the PEM porous substrate. As a result of these two competing processes, the radius of the drop base goes through a maximum with time. The variation of droplet base and front diameter with time on the PEM porous substrate is monitored using microscope fitted with CCD camera and a PC. It is seen that the droplet base diameter goes through a maximum with time, whereas the front diameter increases continuously with time. Further, methanol droplet spreading and wetting front movement was faster than that for ethanol and deionized water. As the PEM porous substrate is wetted and imbibed well by the methanol compared to ethanol, it is expected that the cross over of methanol would be higher than that of ethanol in direct alcohol fuel cell. It should be noted that cross over of alcohol from anode side to cathode side through membrane is detrimental to the fuel cell operation. The experimental data on the variation of droplet base and wetting front diameter with time is predicted by the model available in the literature.  相似文献   

5.
碱性膜直接甲醇燃料电池因为结合了质子交换膜燃料电池和液体碱燃料电池的优点而产生自身独特的性质,使其可以在一定程度上弥补质子交换膜燃料电池以及液体碱燃料电池的缺点而尤其引人关注。其中碱性膜电解质为碱性膜燃料电池的核心组件,其性能直接关系到燃料电池的性能及寿命。截至目前,关于碱性膜材料的制备及应用方面的报道较多,涉及的碱性膜电解质的种类也较多。本文以燃料电池用碱性膜电解质为综述内容,对国内外关于碱性膜电解质的研究报道进行系统的梳理和介绍。  相似文献   

6.
Pt-Fe/C catalysts were prepared by a modified polyol synthesis method in an ethylene glycol (EG) solution, and then were heat-treated under H2/Ar (10 vol.%) at moderate temperature (300 °C, Pt-Fe/C300) or high temperature (900 °C, Pt-Fe/C900). As comparison, Pt-Fe/C alloy catalyst was prepared by a two-step method (Pt-Fe/C900B). X-ray diffraction (XRD) and transmission electron microscopy (TEM) images show that particles size of the catalyst increases with the increase of treatment temperatures. Pt-Fe/C300 catalyst has a mean particle size of 2.8 nm (XRD), 3.6 nm (TEM) and some Pt-Fe alloy was partly formed in this sample. Pt-Fe/C900B catalyst has the biggest particle size of 6.2 nm (XRD) and the best Pt-Fe alloy form. Cyclicvoltammetry (CV) shows that Pt-Fe/C300 has larger electrochemical surface area than other Pt-Fe/C and the highest utilization ratio of 76% among these Pt-based catalysts. Rotating disk electrode (RDE) cathodic curves show that Pt-Fe/C300 has the highest oxygen reduction reaction (ORR) mass activity (MA) and specific activity (SA), as compared with Pt/C catalyst in 1.0 M HClO4. However, Pt-Fe/C catalyst does not appears to be a more active catalyst than Pt/C for ORR in 1.0 M HClO4 + 0.1 M CH3OH. Pt-Fe/C300 exhibits higher ORR activity and better performance than other Pt-Fe/C or Pt/C catalysts when employed for cathode in direct methanol single cell test, the enhancement of the cell performance is logically attributed to its higher ORR activity, which is probably attributed to more Pt0 species existing and Fe ion corrosion from the catalyst.  相似文献   

7.
Electrocatalysis for the direct alcohol fuel cell   总被引:1,自引:0,他引:1  
The basic principles of a direct alcohol fuel cell are first presented. Low temperature fuel cells (working between ambient temperature and 80–120 °C) need improved catalysts to reach performance levels sufficient for practical applications, particularly for the electric vehicle and for portable electronic devices. This is the case of proton exchange membrane fuel cells (PEMFC) and of direct alcohol fuel cells (DAFC) for which the kinetics of the electrochemical reactions involved (oxidation of reformate hydrogen containing some traces of carbon monoxide, oxidation of alcohols, reduction of oxygen) is rather slow. Basic understanding of electrocatalysis is then examined, showing how to increase the reaction rate both by the nature and the structure of the catalytic electrode and by the electrode potential. Finally the most used Pt-based electrocatalysts to activate the electrode reactions occurring in a direct ethanol fuel cell (DEFC) are discussed on the basis of electrochemical, spectro-electrochemical and fuel cell experiments.  相似文献   

8.
In order to develop a cheaper and durable catalyst for methanol electrooxidation reaction, ceria (CeO2) as a co-catalytic material with Pt on carbon was investigated with an aim of replacing Ru in PtRu/C which is considered as prominent anode catalyst till date. A series of Pt-CeO2/C catalysts with various compositions of ceria, viz. 40 wt% Pt-3–12 wt% CeO2/C and PtRu/C were synthesized by wet impregnation method. Electrocatalytic activities of these catalysts for methanol oxidation were examined by cyclic voltammetry and chronoamperometry techniques and it is found that 40 wt% Pt-9 wt% CeO2/C catalyst exhibited a better activity and stability than did the unmodified Pt/C catalyst. Hence, we explore the possibility of employing Pt-CeO2 as an electrocatalyst for methanol oxidation. The physicochemical characterizations of the catalysts were carried out by using Brunauer Emmett Teller (BET) surface area and pore size distribution (PSD) measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques. A tentative mechanism is proposed for a possible role of ceria as a co-catalyst in Pt/C system for methanol electrooxidation.  相似文献   

9.
With an aim to operate the proton exchange membrane fuel cells (PEMFCs) with dry reactants, an inorganic/organic self-humidifying membrane based on sulfonated polyether ether ketone (SPEEK) hybrid with Cs2.5H0.5PW12O40 supported Pt catalyst (Pt-Cs2.5 catalyst) has been investigated. The Pt-Cs2.5 catalysts incorporated in the SPEEK matrix provide the site for catalytic recombination of permeable H2 and O2 to form water, and meanwhile avoid short circuit through the whole membrane due to the insulated property of Cs2.5H0.5PW12O40 support. Furthermore, the Pt-Cs2.5 catalyst can adsorb the water and transfer proton inside the membrane for its hygroscopic and proton-conductive properties. The structure of the SPEEK/Pt-Cs2.5 composite membrane was characterized by XRD, FT-IR, SEM and EDS. Comparison of the physicochemical and electrochemical properties, such as ion exchange capacity (IEC), water uptake and proton conductivity between the plain SPEEK and SPEEK/Pt-Cs2.5 composite membrane were investigated. Additive stability measurements indicated that the Pt-Cs2.5 catalyst showed improved stability in the SPEEK matrix compared to the PTA particle in the SPEEK matrix. Single cell tests employing the SPEEK/Pt-Cs2.5 self-humidifying membrane and the plain SPEEK membrane under wet or dry operation conditions and primary 100 h fuel cell stability measurement were also conducted in the present study.  相似文献   

10.
In this study, imidazolium functionalized poly(vinyl alcohol) (PVA) was synthesized by acetalization and direct quaternization reaction. Afterwards, composite anion exchange membranes based on imidazolium‐ and quaternary ammonium‐ functionalized PVA were used for direct methanol alkaline fuel cell applications. 1H NMR and Fourier transform infrared spectroscopy data indicated that imidazole functionalized PVA was successfully synthesized. Inductively coupled plasma mass spectrometry data demonstrated that the imidazolium structure was efficiently obtained by direct quaternization of the imidazole group. Composite anion exchange membranes were fabricated by application of the functionalized PVA solution on the surface of porous polycarbonate (PC) membranes. Fuel cell related properties of all prepared membranes were investigated systematically. The imidazolium functionalized composite membrane (PVA‐Im/PC) exhibited higher ionic conductivity (7.8 mS cm?1 at 30 °C) despite a lower water uptake and ion exchange capacity value compared to that of quaternary ammonium. In addition, PVA‐Im/PC showed the lowest methanol permeation rate and the highest membrane selectivity as well as high alkaline and oxidative stability. Dynamic mechanical analysis results reveal that both composite membranes were mechanically resistant up to 107 Pa at 140 °C. The superior performance of imidazolium functionalized PVA composite membrane compared to quaternary ammonium functionalized membrane makes it a promising candidate for direct methanol alkaline fuel cell applications. © 2020 Society of Chemical Industry  相似文献   

11.
《应用化工》2022,(5):958-961
对含有不同官能团的燃料电池用耐碱型阴离子交换膜的研究进展进行了综述。重点讨论了季铵类阴离子交换膜中季铵基团的降解机理。对国内外关于耐碱性阴离子交换膜的研究报道进行了系统的梳理和介绍。  相似文献   

12.
《应用化工》2016,(5):958-961
对含有不同官能团的燃料电池用耐碱型阴离子交换膜的研究进展进行了综述。重点讨论了季铵类阴离子交换膜中季铵基团的降解机理。对国内外关于耐碱性阴离子交换膜的研究报道进行了系统的梳理和介绍。  相似文献   

13.
To improve water management and enhance the catalyst utilization of the cathode catalyst layer of proton exchange membrane (PEM) fuel cells, the effects of polytetrafluoroethylene (PTFE) addition in the catalyst ink and the loading pattern of the catalyst layer were investigated. Two types of catalyst ink were used: a typical one without PTFE (Pt on carbon support + Nafion) and another type added with PTFE (Pt on carbon support + Nafion + PTFE). In exploring the effect of PTFE addition into the conventional full loading pattern of catalyst layer, the presence of 10% PTFE in the catalyst layer improved the cell performance (34% increase of maximum power density) and the optimum Pt loading for the PTFE-added catalyst layer was 0.25 mg/cm2. Two catalyst layer loading patterns created in this work were the strip and chess patterns. Each pattern consists of equal areas of several hydrophilic and hydrophobic segments. The hydrophilic segments were formed by using the ink with PTFE while the hydrophilic had no PTFE. For the catalyst loading pattern effect, the cell achieved the highest performance with the chess pattern, followed by the strip and full loading pattern for the case of 0.5 mg/cm2 Pt loading having a thick catalyst layer of 50-μm thickness. On the other hand, for the case of 0.25 mg/cm2 Pt loading forming a thin catalyst layer of ~30-μm thickness, the catalyst loading pattern had no effect on the cell’s performance.  相似文献   

14.
Reducing the loading of noble Pt-based catalyst is vital for the commercialization of proton exchange membrane fuel cell (PEMFC).However,severe mass transfer polarization loss resulting in fuel cell perfor-mance decline will be encountered in ultra-low Pt PEMFC.In this work,mild oxidized multiwalled carbon nanotubes (mMWCNT) were adopted to construct the catalyst layer,and by varying the loading of carbon nanotubes,the catalyst layer structure was optimized.A high peak power density of 1.23 W·cm 2 for the MEA with mMWCNT was obtained at an ultra-low loading of 120 μg·cm-2 Pt/PtRu (both cathode and anode),which was 44.7% higher than that of MEA without mMWCNT.Better catalyst dispersion,low charge transfer resistance,more porous structure and high hydrophobicity of catalyst layer were ascribed for the reasons of the performance improvement.  相似文献   

15.
The modification of Pt/C catalyst by using ionic liquids to improve their catalyst activities has been reported by many researchers, but their practical behavior in operating fuel cells is still unknown. In this work, we study the ionic liquid modified Pt/C nanoparticle catalysts within cathodes for proton exchange membrane fuel cells. The influence of the ionic liquid amount, adsorption times and dispersing solvents are investigated. The experiment results show the best performance enhancement is achieved through two-time surface modification with 2 wt-% ionic liquid solution. The mechanisms are explored with the attribution to the high oxygen solubility in the ionic liquid enabling an improved oxygen diffusion in micropores and to good hydrophobicity facilitating water expelling from the active sites in fuel cell operation.  相似文献   

16.
In order to develop a cheaper and durable catalyst for methanol electrooxidation reaction, ceria (CeO2) as a co-catalytic material with Pt on carbon was investigated with an aim of replacing Ru in PtRu/C which is considered as prominent anode catalyst till date. A series of Pt-CeO2/C catalysts with various compositions of ceria, viz. 40 wt% Pt-3–12 wt% CeO2/C and PtRu/C were synthesized by wet impregnation method. Electrocatalytic activities of these catalysts for methanol oxidation were examined by cyclic voltammetry and chronoamperometry techniques and it is found that 40 wt% Pt-9 wt% CeO2/C catalyst exhibited a better activity and stability than did the unmodified Pt/C catalyst. Hence, we explore the possibility of employing Pt-CeO2 as an electrocatalyst for methanol oxidation. The physicochemical characterizations of the catalysts were carried out by using Brunauer Emmett Teller (BET) surface area and pore size distribution (PSD) measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques. A tentative mechanism is proposed for a possible role of ceria as a co-catalyst in Pt/C system for methanol electrooxidation.  相似文献   

17.
In this work, a novel self-humidifying membrane electrode assembly (MEA) with Pt/SiO2/C as anode catalyst was developed to improve the performance of proton exchange membrane fuel cell (PEMFC) operating at low humidity conditions. The characteristics of the composite catalysts were investigated by XRD, TEM and water uptake measurement. The optimal performance of the MEA was obtained with the 10 wt.% of silica in the composite catalyst by single cell tests under both high and low humidity conditions. The low humidity performance of the novel self-humidifying MEA was evaluated in a H2/air PEMFC at ambient pressure under different relative humidity (RH) and cell temperature conditions. The results show that the MEA performance was hardly changed even if the RHs of both the anode and cathode decreased from 100% to 28%. However, the low humidity performance of the MEA was quite susceptible to the cell temperature, which decreased steeply as the cell temperature increased. At a cell temperature of 50 °C, the MEA shows good stability for low humidity operating: the current density remained at 0.65 A cm−2 at a usual work voltage of 0.6 V without any degradation after 120 h operation under 28% RH for both the anode and cathode.  相似文献   

18.
This research is aimed to improve the utilization and activity of anodic catalysts, thus to lower the contents of noble metals loading in anodes for methanol electro-oxidation. The direct methanol fuel cell anodic catalysts, Pt-Ru-Ni/C and Pt-Ru/C, were prepared by chemical reduction method. Their performances were tested by using a glassy carbon working electrode through cyclic voltammetric curves, chronoamperometric curves and half-cell measurement in a solution of 0.5 mol/L CH3OH and 0.5 mol/L H2SO4. The composition of the Pt-Ru-Ni and Pt-Ru surface particles were determined by EDAX analysis. The particle size and lattice parameter of the catalysts were determined by means of X-ray diffraction (XRD). XRD analysis showed that both of the catalysts exhibited face-centered cubic structures and had smaller lattice parameters than Pt-alone catalyst. Their sizes are small, about 4.5 nm. No significant differences in the methanol electro-oxidation on both electrodes were found by using cyclic voltammetry, especially regarding the onset potential for methanol electro-oxidation. The electrochemically active-specific areas of the Pt-Ru-Ni/C and Pt-Ru/C catalysts are almost the same. But, the catalytic activity of the Pt-Ru-Ni/C catalyst is higher for methanol electro-oxidation than that of the Pt-Ru/C catalyst. Its tolerance performance to CO formed as one of the intermediates of methanol electro-oxidation is better than that of the Pt-Ru/C catalyst.  相似文献   

19.
The aim of this research is to study the effect of different preparation conditions for making carbon supported platinum catalysts by electroless deposition on the properties and performance of proton exchange membrane fuel cells (PEMFC). The studied parameters are platinum and formaldehyde concentrations, deposition time and the method of formaldehyde addition. By a univariate approach, the optimal preparation conditions of 20 wt% Pt/C catalyst are determined as using 10 g Pt l −1, two hours of deposition time and seven equally spaced additions of 0.15 M formaldehyde. SEM and TEM results indicate that the Pt/C catalyst attained has a small particle size (2–4 nm) and a good dispersion. The efficiency of the activation polarization of membrane electrode assembly (MEA) using these prepared catalysts is nearly that of commercial electrodes, but they have a significantly higher ohmic loss.  相似文献   

20.
As a core component of anion exchange membrane (AEM) fuel cells, it has practical significance to improve the performance of AEMs. However, it is difficult to obtain AEM with both good stability and high conductivity. In this study, a series of AEMs were prepared by chloromethylation, quaternization, and crosslinking reactions. The quaternization reaction was carried out first to ensure that there are abundant quaternary ammonium groups on AEM and enhance the conductivity of membrane. N,N,N′,N′-tetramethylethylenediamine was used as a crosslinker to improve membrane stability and mechanical property. A simple, mild, and cost-effective AEM synthetic route was developed. This strategy achieves a certain balance of electrochemical and physical properties. The effect of the crosslinking reactions on the property of membrane was evaluated. Crosslinked membranes have better dimensional stability (water uptake: 20.2% and swelling ratio: 2.1%), mechanical properties (55.84 MPa), and alkaline stability because crosslinked structures result in large steric hindrance. The mutually independent quaternization and crosslinking reaction do not affect the electrochemical performance of membranes; in the crosslinking reaction stage, crosslinker also reacted as quaternization agent and increased the number of reactive groups in AEM. Thus, the resulting crosslinked AEM exhibits higher ion exchange capacity and ionic conductivities (46.4 mS cm−1). © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48169.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号