首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shang Chen 《Polymer》2004,45(19):6519-6524
Copolymerization of propylene oxide and carbon dioxide was successfully carried out by using double metal cyanide complex (DMC) based on Zn3[Co(CN)6]2. It has been found that this catalyst demonstrated highly enhanced catalytic activity over 1000 g copolymer per gram of Zn3[Co(CN)6]2 compared with its analog based on Zn3[Fe(CN)6]2. The copolymers prepared were characterized by IR, 1H NMR, the molar fraction of CO2 (FCO2) for copolymer was as high as 0.31 under optimum condition. Propylene carbonate was also identified as co-product by the spectrometry. The study showed that lower temperature is favorable for incorporation of CO2 into copolymer instead of propylene carbonate, and FCO2 is significantly influenced by amount of catalyst used. The kind of complexing agent employed in preparation impacted on the catalytic activity, but not yet for FCO2.  相似文献   

2.
Xiaoqin Xu  Haoran Li  Yong Wang  Zhiquan Shen 《Polymer》2007,48(14):3921-3924
Imidazolium salts, most of which are room temperature ionic liquids (ILs), have been introduced as effective and tunable cocatalysts in the copolymerization of CO2 with epoxides catalyzed by (salen)CrIIICl complex for the first time. Effects of imidazolium salts with different alkyl chains as well as with different anions on the copolymerization were investigated. The results showed that the copolymerization was influenced obviously by the property of anion. In addition, the cation of imidazolium salts with longer alkyl chain length such as n-dodecyl (TOF, 242.5 h−1, carbonate linkages > 99%) displays better activities and selectivity in the copolymerization as compared with N-MeIm (TOF, 72.5 h−1, carbonate linkages 94%). These results are instructive for further design of task-specific ILs as effective cocatalysts to improve the copolymerization of CO2 with epoxides.  相似文献   

3.
Traditional cobalt-zinc double metal cyanide complex [Zn-Co(III)DMCC] catalysts could catalyze the copolymerization of carbon dioxide (CO2) with propylene oxide (PO) to afford poly (propylene carbonate) (PPC) with high productivity. But the molecular weight (MW) of PPC and the polycarbonate selectivity were not satisfied. In this work, by using a nanolamellar Zn-Co(III) DMCC catalyst, the CO2-PO copolymerization was successfully performed to yield PPC with high molecular weight (Mn: 36.5 kg/mol) and high molar fraction of CO2 in the copolymer (FCO2: 74.2%) at low polymerization temperatures (40∼80 °C). Improved selectivity (FCO2: 72.6%) and productivity of the catalyst (6050 g polymer/g Zn) could be achieved at 60 °C within 10 h. The influences of water content on CO2-PO copolymerization were quantitatively investigated for the first time. It was proposed that trace water in the reaction system not only acted as an efficient chain transfer agent, which decreased MW of the resultant copolymer, but also strongly interacted with zinc site of the catalyst, which led to low productivity of PPC and more amounts of cyclic propylene carbonate (cPC). These conclusions were also supported by the apparent kinetics of CO2-PO copolymerization. ESI-MS results showed that all polymers have two end alkylhydroxyl groups. It was thus proposed that the alkylhydroxyl groups came from the initiation reaction of Zn-OH in the catalyst and the chain transfer reaction by H2O. The proposed mechanism of chain initiation, propagation and chain transfer reaction were proved by the experimental results.  相似文献   

4.
Xue-Ke Sun  Shang Chen  Qi Wang  Guo-Rong Qi 《Polymer》2010,51(24):5719-5725
This paper describes a convenient one-pot terpolymerization of CO2, cyclohexene oxide (CHO) and maleic anhydride (MAH) to afford a poly (ester-carbonate) with a low content of ether units (2.9-4.3 mol%) using a highly active Zn-Co(III) double metal cyanide complex (DMCC) catalyst. Terpolymerization was carried out in tetrahydrofuran (THF) at 75-90 °C and 1.0-4.0 MPa and no cyclic carbonate was observed in NMR spectra. The number-average molecular weight (Mn) of the terpolymer was up to 14.1 kg/mol with a narrow molecular weight distribution of 1.4-1.7. The apparent efficiency of the catalyst was up to 12.7 kg polymer/g Zn, representing the highest catalytic activity for terpolymerization of CO2, epoxides and cyclic anhydrides to date. THF dramatically inhibited polyether formation in this terpolymerization owing to its nucleophilicity towards the Zn2+ center of Zn-Co (III) DMCC. This presents the first example of solvent-assisted selectivity for inhibiting ether units in CO2 polymerization catalyzed by a heterogeneous system. Kinetic analyses of MAH/CHO/CO2 terpolymerization (MAH/CHO 0.2) suggested that polyester production was slightly faster than polycarbonate production in the early stage. A mechanism for this terpolymerization catalyzed by Zn-Co (III) DMCC catalyst was proposed. Moreover, addition of small amounts of MAH (MAH/CHO molar ratio ≤0.2) during CO2/CHO copolymerization can improve the thermal properties of the resultant terpolymers.  相似文献   

5.
The copolymerizations of carbon dioxide (CO2) and propylene oxide (PO) were performed using new ternary rare-earth catalyst. It was found that the rare-earth coordination catalyst consisting of Nd(CCl3COO)3, ZnEt2 and glycerine was very effective for the copolymerization of PO with CO2. The effects of the relative molar ratio and addition order of the catalyst components, copolymerization reaction time, and operating pressure as well as temperature on the copolymerization were systematically investigated. At an appropriate combination of all variables, the yield could be as high as 6875 g/mol Nd per hour at 90 °C in a 8 h reaction period.  相似文献   

6.
The effects of carbon dioxide on the dehydrogenation of C3H8 to produce C3H6 were investigated over several Cr2O3 catalysts supported on Al2O3, active carbon and SiO2. Carbon dioxide exerted promoting effects only on SiO2-supported Cr2O3 catalysts. The promoting effects of carbon dioxide over a Cr2O3/SiO2 catalyst were to enhance the yield of C3H6 and to suppress the catalyst deactivation.  相似文献   

7.
Oxidative dehydrogenation (ODH) of isobutane over LaBaSm oxide catalyst in the temperature range 450–600°C, and the influence of the addition of CO2 into the feed were investigated. It was found that LaBaSm oxide is an active and stable catalyst for ODH of isobutane. Upon reaction conditions the specific surface area decreases and a new phase, La2O(CO3)2, is formed, which causes an increase in the surface specific conversion. The selectivity to isobutene as well as isobutane conversion can be improved by adding CO2 into the feed. These effects may be explained as due to the combined effects of improvement of the active phase formation and the competition between molecular O2 and CO2 adsorption on the sites which are responsible for total oxidation.  相似文献   

8.
Highly-ordered TiO2 nanotube arrays (TiNTA) were prepared by an electrochemical anodization method and used as the carrier material to load 1 wt.% Ru. The Ru/TiNTA catalyst was then applied to the combination reactions of the partial oxidation of methane reaction (POM) with the carbon dioxide reforming with methane reaction (CRM) for syngas production. In comparison with the commercial TiO2 powder (P25) supported 1 wt.% Ru catalyst, Ru/TiNTA shows higher activity and much better stability. The superior performance of Ru/TiNTA is attributed to the specific monolithic-like structure and confinement effect of TiNTA.  相似文献   

9.
Catalysts of iron oxide dispersed on Al or Si oxides were prepared via a polymeric precursor derived from the Pechini method and tested in the dehydrogenation of ethylbenzene in the presence of CO2, in order to contribute with the studies of this reaction. The catalysts were characterized by thermogravimetric analysis (TG), temperature-programmed reduction (TPR), X-ray diffraction (DRX) and temperature-programmed desorption of CO2 (TPD-CO2). Analysis of the spent catalysts by TG and Fourier transformed infrared spectroscopy (FT-IR) pointed to the contribution of CO2 to the coke deposition. The catalytic results suggest that the high initial ethylbenzene conversion is due to the contribution of basic sites, and the CO2 adsorption in the basic site (lattice oxygen) may compete with the oxidative dehydrogenation of ethylbenzene. Although CO2 provides the appropriate conditions to lower the consumption of the basic site, it is not able to promote the Fe2+ oxidation or to regenerate the basic site (lattice oxygen) in the iron oxide dispersed on Al or Si oxide catalysts.  相似文献   

10.
A series of single-component cobalt salen complexes, N,N′-bis(salicylidene)-1,2phenylenediamino cobaltIII X (X = Cl (1a), Br (1b), NO3 (1c), CF3COO (1d), BF4 (1e), and N3 (1f)) (SalphCoX), were prepared for alternating copolymerization of carbon dioxide and propylene oxide(PO) under mild condition. The axial anion X group of the SalenphCoX played important role in tailoring the catalytic activity, polymeric/cyclic carbonate selectivity, as well as stereochemistry of carbonate unit sequence in the polymer chain. SalenphCoX with an electron-withdrawing axial X group (complex 1c) was an ideal catalyst for the copolymerization of CO2 and PO to selectively produce polycarbonate with ∼99% carbonate linkage and over 81% head-to-tail structure.  相似文献   

11.
The paper takes into consideration a new approach for CO2 capture and transport, based on the formation of solid CO2 hydrates.Carbon dioxide sequestration from power plants can take advantage of the properties of gas hydrates. The formation and decomposition of hydrates from various N2-CO2 mixtures has been studied experimentally in a 2 l reactor, to determine the CO2 separation in terms of hydrate composition and residual CO2 content in the reacted gas.Carbon dioxide acts as a co-former for the production of hydrates containing nitrogen, besides CO2. The mixed hydrates that are obtained are less stable than simple CO2 hydrates. When CO2 content in the flue gas is higher than 30% by volume, the hydrates formed at 5 MPa are sufficiently concentrated (about 70% CO2) and carbon dioxide reduction in the reacted gas is acceptable.The application of a process based on hydrate formation could be especially interesting (for CO2 capture and transport) when connected to an oxy-coal combustion process; in this case the CO2 content in the flue gas is very high and the hydrate formation is greatly facilitated.  相似文献   

12.
CO2 reforming of CH4 over stabilized mesoporous Ni-CaO-ZrO2 composites   总被引:1,自引:0,他引:1  
Shuigang Liu  Lianxiu Guan  Junping Li  Wei Wei  Yuhan Sun 《Fuel》2008,87(12):2477-2481
Mesoporous Ni-CaO-ZrO2 nanocomposites with high thermal stability were designed and employed in the CO2/CH4 reforming. The nanocomposites with appropriate Ni/Ca/Zr molar ratios exhibited excellent activity and prominent coking resistivity. The Ni crystallites were effectively controlled under the critical size for coke formation in such nanocomposites. It was found that low Ni content resulted in high metal dispersion and good catalytic performance. Moreover, the basicity of the matrices improved the chemisorption of CO2 and promoted the gasification of deposited coke on the catalyst.  相似文献   

13.
Mesoporous nanocrystalline zirconia with high-surface area and pure tetragonal crystalline phase has been prepared by the surfactant-assisted route, using Pluronic P123 block copolymer surfactant. The synthesized zirconia showed a surface area of 174 m2 g−1 after calcination at 700 °C for 4 h. The prepared zirconia was employed as a support for nickel catalysts in dry reforming reaction. It was found that these catalysts possessed a mesoporous structure and even high-surface area. The activity results indicated that the nickel catalyst showed stable activity for syngas production with a decrease of about 4% in methane conversion after 50 h of reaction. Addition of promoters (CeO2, La2O3 and K2O) to the catalyst improved both the activity and stability of the nickel catalyst, without any decrease in methane conversion after 50 h of reaction.  相似文献   

14.
The effect of carbonate and bicarbonate anions on the oxygen reduction reaction was investigated in four alkaline solutions (pH ∼ 14) on a Pt disk type electrode with varying concentrations of carbonate and bicarbonate. The addition of carbonate and bicarbonate had two primary effects on the observed voltammetric behavior: i) The Tafel slope shifts positive with increasing carbonate/bicarbonate concentration, indicating that the carbonate anions may compete for surface adsorption sites; and ii) The dissolved oxygen concentration and diffusion coefficient are depressed with increasing anion concentration. Finally, adding CO2 to the cathode stream of an anion exchange membrane fuel cell caused an improvement in the device performance under fully hydrated conditions, suggesting that the fuel cell was operating at least partially under the carbonate cycle.  相似文献   

15.
In continuation of our goal to determine the ability of CO2 to plasticize acrylonitrile (AN) copolymers and facilitate melt processing at temperatures below the onset of thermal degradation, a systematic study has been performed to determine the influence of AN content on CO2 absorption and subsequent viscosity reduction. Our previous report focused on the absorption of CO2 in a relatively thermally stable 65 mol% AN copolymer. In this study, the ability for CO2 to absorb in AN copolymers containing 85-98 mol% acrylonitrile was determined, and subsequent viscosity and equivalent processing temperature reductions were evaluated. Eighty five and 90 mol% acrylonitrile/methyl acrylate (AN/MA) copolymers were found to absorb up to 5.6 and 3.0 wt% CO2, corresponding to reductions of Tg of 37 and 27 °C, and subsequent viscosity reductions of 61 and 56%, respectively. CO2 absorption in these copolymers was found to occur immediately, in contrast to the time dependent absorption observed in the 65 mol% copolymer. An Arrhenius scaling analysis was used to determine the equivalent reductions in processing temperature resulting from the viscosity reductions, and reductions of up to 25 and 9 °C were observed for the 85 and 90 mol% AN copolymers. Based on the specific conditions used for absorption, no significant CO2 uptake was observed for AN copolymers containing greater than 90 mol% acrylonitrile. Higher temperatures than those used here may be required to absorb CO2 into AN copolymers containing greater than 90 mol% AN.  相似文献   

16.
Past research with high temperature molten carbonate electrochemical cells has shown that carbon dioxide can be separated from flue gas streams produced by pulverized coal combustion for power generation. However, the presence of trace contaminants, i.e., sulfur dioxide and nitric oxides, will impact the electrolyte within the cell. If a lower temperature cell could be devised that would utilize the benefits of commercially-available, upstream desulfurization and denitrification in the power plant, then this CO2 separation technique can approach more viability in the carbon sequestration area. Recent work has led to the assembly and successful operation of a low temperature electrochemical cell. In the proof-of-concept testing with this cell, an anion exchange membrane was sandwiched between gas-diffusion electrodes consisting of nickel-based anode electrocatalysts on carbon paper. When a potential was applied across the cell and a mixture of oxygen and carbon dioxide was flowed over the wetted electrolyte on the cathode side, a stream of CO2 to O2 was produced on the anode side, suggesting that carbonate/bicarbonate ions are the CO2 carrier in the membrane. Since a mixture of CO2 and O2 is produced, the possibility exists to use this stream in oxy-firing of additional fuel.From this research, a novel concept for efficiently producing a carbon dioxide rich effluent from combustion of a fossil fuel was proposed. Carbon dioxide and oxygen are captured from the flue gas of a fossil-fuel combustor by one or more electrochemical cells or cell stacks. The separated stream is then transferred to an oxy-fired combustor which uses the gas stream for ancillary combustion, ultimately resulting in an effluent rich in carbon dioxide. A portion of the resulting flow produced by the oxy-fired combustor may be continuously recycled back into the oxy-fired combustor for temperature control and an optimal carbon dioxide rich effluent.  相似文献   

17.
Michael J. Bortner 《Polymer》2004,45(10):3399-3412
Acrylonitrile (AN) copolymers (AN content greater than about 85 mol%) are traditionally solution processed to avoid a cyclization and crosslinking reaction that takes place at temperatures where melt processing would be feasible. It is well known that carbon dioxide (CO2) reduces the glass transition temperature (Tg) and consequently the viscosity of many glassy and some semi-crystalline thermoplastics. However, the ability of CO2 to act as a processing aid and permit processing of thermally unstable polymers at temperatures below the onset of thermal degradation has not been explored. This study concentrates on the ability to plasticize an AN copolymer with CO2, which may ultimately permit melt processing at reduced temperatures. To facilitate viscosity measurements and maximize the CO2 absorption, a relatively thermally stable, commercially produced AN copolymer containing 65 mol% AN was investigated in this research. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) indicated that CO2 significantly absorbs into and reduces the Tg of the AN copolymer. Pressurized capillary rheometry indicated that the magnitude of the viscosity reduction is dependent on the amount of absorbed CO2, which correlates directly to the Tg reduction of the plasticized material. Up to a 60% viscosity reduction was obtained over the range of shear rates tested for the plasticized copolymer containing up to 6.7 wt% CO2 (31 °C Tg reduction), corresponding to as much as a 30 °C equivalent reduction in processing temperature. A Williams-Landel-Ferry (WLF) analysis was used to estimate the viscosity reduction based on the Tg reduction (and corresponding amount of absorbed CO2) in the plasticized AN copolymer, and the predicted viscosity reduction based on using the universal constants was 34-85% higher than measured, depending on the amount of absorbed CO2. Van Krevelen's empirical solubility relationships were used to calculate the expected absorbance levels of CO2, and found to be highly dependent on the choice of constants within the statistical ranges of error of the Van Krevelen relationships.  相似文献   

18.
The pulse corona plasma has been used as an activation method for reaction of methane and carbon dioxide, the product was C2 hydrocarbons and by-products were CO and H2. Methane conversion and the yield of C2 hydrocarbons were affected by the carbon dioxide concentration in the feed. The conversion of methane increased with increasing carbon dioxide concentration in the feed whereas the yield of C2 hydrocarbons decreased. The synergism of La2O3/γ-Al2O3 and plasma gave methane conversion of 24.9% and C2 hydrocarbons yield of 18.1% were obtained at the power input of plasma was 30 W. The distribution of C2 hydrocarbons changed by using Pd-La2O3/γ-Al2O3 catalyst, the major C2 product was ethylene.  相似文献   

19.
A. Gugliuzza  E. Drioli 《Polymer》2005,46(23):9994-10003
CO2 transport through functional assembled mono-layers was evaluated in relation to H2O and nonpolar gases such as CH4, O2, N2. Membranes based on Pebax®2533 were functionalised by incorporating chemical compounds containing free hydroxyl, N-alkyl sulphonamide, bulky benzoate groups. The effects of both the chemical nature and concentration of the modifier on the gas transport were reported, respectively. The permeability coefficients of different penetrating chemical species were compared, evidencing the higher affinity of the layers to water vapour and carbon dioxide, due to favourable interactions between polar moieties and penetrant. The condensability of the penetrant directed the permeability of the species considered and was responsible for the high solubility selectivity between H2O and CO2 (i.e. , DH2O/D2CO=0.6, SH2O/S2CO=11.4 at 25 °C for Pebax/KET 50/50 w/w). An increase in polar moieties resulted in enhanced permeability and selectivity with respect to the pure polymer. In contrast, the functionalised polymer was not capable to discriminate between the smallest penetrants such as O2 and N2, with consequent decrease in the ideal selectivity (P2CO/O2, P2CO/N2). The functional layers exhibited permeability and selectivity covering broad ranges of values.  相似文献   

20.
Synthesis of cyclic carbonate from 4-vinyl-1-cyclohexene-1,2-epoxide (VCHO) and carbon dioxide was investigated without using any solvent in the presence of ionic liquid as a catalyst. Ionic liquids based on 1-alkylmethylimidazolium salts of different alkyl groups (ethyl, butyl, hexyl, octyl) and different anions (Cl, BF4, PF6) were used as catalysts. The conversion of VCHO was affected by the structure of the imidazolium salt ionic liquids; the ones with the cations of bulkier alkyl chain length and with more nucleophilic anion showed better reactivity. Reaction temperature, carbon dioxide pressure, and zinc halide cocatalyst enhanced the addition of CO2 to VCHO. Semi-batch operation with continuous supply of carbon dioxide showed higher VCHO conversion than batch operation did.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号