首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sixun Zheng  Yongli Mi 《Polymer》2003,44(4):1067-1074
The blends of poly(hydroxyether of bisphenol A) (phenoxy) with poly(4-vinyl pyridine) (P4VPy) were investigated by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and high-resolution solid-state nuclear magnetic resonance (NMR) spectroscopy. The single, composition-dependent glass transition temperature (Tg) was observed for each blend, indicating that the system is completely miscible. The sigmoid Tg-composition relationship is characteristic of the presence of the strong intermolecular specific interactions in the blend system. FTIR studies revealed that there was intermolecular hydrogen bonding in the blends and the intermolecular hydrogen bonding between the pendant hydroxyl groups of phenoxy and nitrogen atoms of pyridine ring is much stronger than that of self-association in phenoxy. To examine the miscibility of the system at the molecular level, the high resolution 13C cross-polarization (CP)/magic angle spinning (MAS) together with the high-power dipolar decoupling (DD) NMR technique was employed. Upon adding P4VPy to the system, the chemical shift of the hydroxyl-substituted methylene carbon resonance of phenoxy was observed to shift downfield in the 13C CP/MAS spectra. The proton spin-lattice relaxation time T1(H) and the proton spin-lattice relaxation time in the rotating frame T(H) were measured as a function of the blend composition. In light of the proton spin-lattice relaxation parameters, it is concluded that the phenoxy and P4VPy chains are intimately mixed on the scale of 20-30 Å.  相似文献   

2.
Poly(2-methyl-2-oxazoline) (PMOx) was found to be miscible with poly (styrene-coallyl alcohol), poly(hydroxyether of bisphenol-A), poly (2-hydroxypropyl methacrylate) and poly(p-vinylphenol) (PVPh), when cast from N,N-dimethylformamide solutions and to form interpolymer complexes with PVPh in methanol solutions. The hydrogen bonding interactions between PMOx and hydroxyl-containing polymers were studied by infrared spectroscopy and compared with the corresponding blends of poly(2-ethyl-2-oxazoline) (PEOx). Except with phenoxy, PMOx interacts more strongly with hydroxyl-containing polymers than PEOx does.  相似文献   

3.
J.Z YiS.H Goh 《Polymer》2003,44(6):1973-1978
Poly(methylthiomethyl methacrylate) (PMTMA) is miscible with poly(vinyl alcohol) (PVA) over the whole composition range as shown by the existence of a single glass transition temperature in each blend. The interaction between PMTMA and PVA was examined by Fourier transform infrared spectroscopy, solid-state nuclear magnetic resonance spectroscopy and X-ray photoelectron spectroscopy. The interactions mainly involve the hydroxyl groups of PVA and the thioether sulfur atoms of PMTMA, and the involvement of the carbonyl groups of PMTMA in interactions is not significant. The measurements of proton spin-lattice relaxation time reveal that PMTMA and PVA do not mix intimately on a scale of 1-3 nm, but are miscible on a scale of 20-30 nm. In comparison, we have previously found that PMTMA is miscible with poly(p-vinylphenol) and the two polymers mix intimately on a scale of 1-3 nm.  相似文献   

4.
The miscibility of phenolic resin and poly(vinyl acetate) (PVAc) blends was investigated by differential scanning calorimeter (DSC), Fourier transform infrared spectroscopy (FT-IR) and solid state 13C nuclear magnetic resonance (NMR). This blend displays single glass transition temperature (Tg) over entire compositions indicating that this blend system is miscible in the amorphous phase due to the formation of hydrogen bonding between hydroxyl groups of phenolic resin and carbonyl groups of PVAc. Quantitative measurements on fraction of hydrogen-bonded carbonyl group using both 13C solid-state NMR and FT-IR analyses result in good agreement between these two spectroscopic techniques. According to the proton spin-lattice relaxation time in the rotating frame (TH), the phenolic/PVAc blend is intimately mixed on a scale less than 2-3 nm. Furthermore, the inter-association equilibrium constant and its related enthalpy of phenolic/PVAc blends were determined as a function of temperatures by infrared spectra based on the Painter-Coleman association model.  相似文献   

5.
Miscibility and phase behavior in the blends of phenolphthalein poly(ether sulfone) (PES-C) with poly(hydroxyether of bisphenol A) (PH) were investigated by means of differential scanning calorimetry (DSC), high resolution solid state nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FTIR). It was found that the homogeneity of the as-prepared blends depended on the solvents used; N,N-dimethylformamide (DMF) provided the segmental mixing for PH and PES-C, which is confirmed by the behavior of single, composition-dependent glass transition temperatures (Tg's). To examine the homogeneity of the blends at the molecular level, the proton spin-lattice relaxation times in the rotating frame T1ρ(H) were measured via 13C CP/MAS NMR spectroscopy as a function of blend composition. In view of the T1ρ(H) values, it is concluded that the PH and PES-C chains are intimately mixed on the scale of 20-30 Å. FTIR studies indicate that there were the intermolecular specific interactions in this blends, involved with the hydrogen-bonding between the hydroxyls of PH and the carbonyls of PES-C, and the strength of the intermolecular hydrogen bonding is weaker than that of PH self-association. At higher temperature, the PH/PES-C blends underwent phase separation. By means of thermal analysis, the phase boundaries of the blends were determined, and the system displayed the lower critical solution temperature behavior. Thermogravity analysis (TGA) showed that the blends exhibited the improved thermal stability, which increases with increasing PES-C content.  相似文献   

6.
X.D HuangS.H Goh 《Polymer》2002,43(4):1417-1421
The miscibility of blends of single [60]fullerene (C60)-end-capped poly(ethylene oxide) (FPEO) or double C60-end-capped poly(ethylene oxide) (FPEOF) with poly(vinyl chloride) (PVC) has been studied. Similar to poly(ethylene oxide) (PEO), both FPEO and FPEOF are also miscible with PVC over the entire composition range. X-ray photoelectron spectroscopy showed the development of a new low-binding-energy Cl2p doublet and a new high-binding-energy O1s peak in FPEO/PVC blends. The results show that the miscibility between FPEO and PVC arises from hydrogen bonding interaction between the α-hydrogen of PVC and the ether oxygen of FPEO. From the melting point depression of PEO, FPEO or FPEOF in the blends, the Flory-Huggins interaction parameters were found to be −0.169, −0.142, −0.093 for PVC/PEO, PVC/FPEO and PVC/FPEOF, respectively, demonstrating that all the three blend systems are miscible in the melt. However, the incorporation of C60 slightly impairs the interaction between PEO and PVC.  相似文献   

7.
Miscibility and crystallization behavior have been investigated in blends of poly(butylene succinate) (PBSU) and poly(ethylene oxide) (PEO), both semicrystalline polymers, by differential scanning calorimetry and optical microscopy. Experimental results indicate that PBSU is miscible with PEO as shown by the existence of single composition dependent glass transition temperature over the entire composition range. In addition, the polymer-polymer interaction parameter, obtained from the melting depression of the high-Tm component PBSU using the Flory-Huggins equation, is composition dependent, and its value is always negative. This indicates that PBSU/PEO blends are thermodynamically miscible in the melt. The morphological study of the isothermal crystallization at 95 °C (where only PBSU crystallized) showed the similar crystallization behavior as in amorphous/crystalline blends. Much more attention has been paid to the crystallization and morphology of the low-Tm component PEO, which was studied through both one-step and two-step crystallization. It was found that the crystallization of PEO was affected clearly by the presence of the crystals of PBSU formed through different crystallization processes. The two components crystallized sequentially not simultaneously when the blends were quenched from the melt directly to 50 °C (one-step crystallization), and the PEO spherulites crystallized within the matrix of the crystals of the preexisted PBSU phase. Crystallization at 95 °C followed by quenching to 50 °C (two-step crystallization) also showed the similar crystallization behavior as in one-step crystallization. However, the radial growth rate of the PEO spherulites was reduced significantly in two-step crystallization than in one-step crystallization.  相似文献   

8.
Han Lü  Guohua Tian 《Polymer》2004,45(9):2897-2909
Poly(hydroxyether sulfone) (PHES) was synthesized through polycondensation of bisphenol S with epichlorohydrin. It was characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy and differential scanning calorimetry (DSC). The miscibility in the blends of PHES with poly(ethylene oxide) (PEO) was established on the basis of the thermal analysis results. DSC showed that the PHES/PEO blends prepared by casting from N,N-dimethylformamide (DMF) possessed single, composition-dependent glass transition temperatures (Tgs), indicating that the blends are miscible in amorphous state. At elevated temperatures, the PHES/PEO blends underwent phase separation. The phase behavior was investigated by optical microscope and the cloud point curve was determined. A typical lower critical solution temperature behavior was observed in the moderate temperature range for this blend system. FTIR studies indicate that there are the competitive hydrogen bonding interactions upon adding PEO to the system, which was involved with the intramolecular and intermolecular hydrogen bonding interactions, i.e. -OH?OS, -OH?-OH and -OH versus ether oxygen atoms of PEO between PHES and PEO. In terms of the infrared spectroscopic investigation, it is judged that from weak to strong the strength of the hydrogen bonding interactions is in the following order: -OH?OS, -OH?-OH and -OH versus ether oxygen atoms of PEO.  相似文献   

9.
Blends of poly(ethylene oxide) (PEO) with poly(ε-caprolactone) (PCL), both semicrystalline polymers, were prepared by co-dissolving the two polyesters in chloroform and casting the mixture. Phase contrast microscopy was used to probe the miscibility of PEOB/PCL blends. Experimental results indicated that PEO was immiscible with PCL because the melt was biphasic. Crystallization of PEO/PCL blends was studied by differential scanning calorimetry and analyzed by the Avrami equation. The crystallization rate of PEO decreased with the increase of PCL in the blends while the crystallization mechanism did not change. In the case of the isothermal crystallization of PCL, the crystallization mechanism did not change, and the change in the crystallization rate was not very big, or almost constant with the addition of PEO, compared with the change of the crystallization rate of PEO.  相似文献   

10.
Miscibility of biodegradable poly(ethylene succinate) (PES)/poly(vinyl phenol) (PVPh) blends has been studied by differential scanning calorimetry (DSC) in this work. PES is found to be miscible with PVPh as shown by the existence of single composition dependent glass transition temperature over the entire composition range. Spherulitic morphology and the growth rates of neat and blended PES were investigated by optical microscopy (OM). Both neat and blended PES show a maximum growth rate value in the crystallization temperature range of 45-65 °C, with the growth rate of neat PES being higher than that of blended PES at the same crystallization temperature. The overall crystallization kinetics of neat and blended PES was also studied by DSC and analyzed by the Avrami equation at 60 and 65 °C. The crystallization rate decreases with increasing the temperature for both neat and blended PES. The crystallization rate of blended PES is lower than that of neat PES at the same crystallization temperature. However, the Avrami exponent n is almost the same despite the blend composition and crystallization temperature, indicating that the addition of PVPh does not change the crystallization mechanism of PES but only lowers the crystallization rate.  相似文献   

11.
A.A Bhutto  D VeselyB.J Gabrys 《Polymer》2003,44(21):6627-6631
The miscibility and specific interactions of polystyrene (PS) and sodium sulfonated polystyrene (Na-SPS) with poly(vinyl methyl ether) (PVME) blends (ranging from 10 to 90% PS by weight) were examined experimentally by FTIR spectroscopy. The FTIR studies at different temperatures have shown that changes in spectra of polymer blends, as reported in the literature can be explained by temperature changes in pure homopolymers. This indicates that molecular interactions, which are responsible for miscibility, are not detectable by infrared absorptions and are therefore of unspecific strength and location. The FTIR of SPS/PVME blends show that sulfonate groups of PS affect polymer miscibility through changes in configuration of molecules, rather than through direct interaction with the PVME.  相似文献   

12.
Y KongJ.N Hay 《Polymer》2002,43(6):1805-1811
Poly(ethylene terephthalate)/polycarbonate blends were produced in a twin-screw extruder with and without added transesterification catalyst, lanthanum acetyl acetonate. The miscibility of the blends was studied from their crystallisation behaviour and variation in glass transition temperature with composition using differential scanning calorimetry, scanning electron microscopy and change in mechanical properties. The blends prepared without the catalyst showed completely immiscible over all compositions, while those prepared in the presence of the catalyst showed some limited miscible. The presence of PC inhibited the crystallisation of PET but this was much greater in the blends prepared in the presence of catalyst suggesting that some reaction had taken place between the two polyesters. The tensile properties showed little differences between the two types of blends.  相似文献   

13.
E El Shafee 《Polymer》2002,43(3):921-927
The miscibility of atactic poly(epichlorohydrin) (aPECH) with poly(vinyl acetate) (PVAc) was examined under two different conditions: (i) in dilute solution, using vicometeric measurements and (ii) as cast films, using differential scanning calorimetric (DSC) and FT-infrared spectroscopy. Phase separation on heating, i.e. lower critical solution temperature (LCST) behavior of the aPECH/PVAc blends was examined by the measurement of transmitted light intensity against temperature. From viscosity measurements, the Krigbaum-Wall polymer-polymer interaction (ΔB) was evaluated. The DSC results show that the aPECH/PVAc blends are miscible as evidenced by the observation of a single composition-dependent glass-transition temperature (Tg) which is well described by the Couchman and Gordon Taylor models. The Flory-Huggins interaction parameter (χ12) calculated from the Tg-method was negative and equal to −0.01, indicating a relatively low interaction strength. The FT-IR results match very well with those of DSC. The cloud point phenomenon is thermodynamically driven but phase separation, once taken place, is diffusion controlled in normal accessible time.  相似文献   

14.
J.Z. Yi  S.H. Goh 《Polymer》2005,46(21):9170-9175
Poly(n-propyl methacrylate) (PPMA) is miscible with poly(vinyl alcohol) (PVA) over the whole composition range as shown by the existence of a single glass transition temperature in each blend. The interaction between PPMA and PVA was examined by Fourier transform infrared spectroscopy and solid-state nuclear magnetic resonance spectroscopy. The interactions mainly involve the hydroxyl groups of PVA and the carbonyl groups of PPMA. The measurements of proton spin-lattice relaxation time reveal that PPMA and PVA do not mix intimately on a scale of 1-3 nm, but are miscible on a scale of 20-30 nm. A small negative interaction parameter value has been obtained by melting point depression measurement.  相似文献   

15.
H.L HuangS.H Goh  A.T.S Wee 《Polymer》2002,43(9):2861-2867
The miscibility and specific interactions in poly(2,2,3,3,3-pentafluoropropyl methacrylate-co-4-vinylpyridine) (PFX, X=0, 28, 40 or 54, denoting the mol% of 4-vinylpyridine unit in the copolymer)/poly(p-vinylphenol) (PVPh) blends have been studied by differential scanning calorimetry (DSC), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). DSC studies show that PF0 is immiscible with PVPh, and the presence of a sufficient amount of 4-vinylpyridine units in the copolymer produces miscible blends. AFM images also clearly show that the blends change from heterogeneous to homogeneous upon the incorporation of 4-vinylpyridine unit into the copolymer. FTIR and XPS show the existence of inter-polymer hydrogen bonding between PFX and PVPh. The intensity of the inter-polymer hydrogen bonding increases with increasing 4-vinylpyridine content in the copolymer.  相似文献   

16.
M. Maldonado-Santoyo  I. Katime 《Polymer》2004,45(16):5591-5596
Miscibility behavior over a wide composition range was detected for polymer blends of poly(vinyl phenyl ketone hydrogenated) (PVPhKH) with poly(styrene-co-4-vinylpyridine) (PS-co-4VPy). Differential scanning calorimetry (DSC) and thermo mechanical analysis (TMA) reveal that each composition has only one glass transition temperature. The variation of the glass transition temperature with composition for PVPhKH/PS-co-4VPy miscible blends follows the Gordon-Taylor equation. FTIR analysis of this binary system indicates the existence of hydrogen bonding between pyridine ring of PS-co-4VPy and hydroxyl groups insert into PVPhKH. This specific interaction has a decisive influence in the phase behavior of PVPhKH/PS-co-4VPy blends.  相似文献   

17.
Miscibility has been investigated in blends of poly(butylene succinate) (PBSU) and poly(vinyl phenol) (PVPh) by differential scanning calorimetry in this work. PBSU is miscible with PVPh as shown by the existence of single composition dependent glass transition temperature over the entire composition range. In addition, the polymer–polymer interaction parameter, obtained from the melting depression of PBSU using the Nishi–Wang equation, is composition dependent, and its value is always negative. This indicates that PBSU/PVPh blends are thermodynamically miscible in the melt. Preliminary morphology study of PBSU/PVPh blends was also studied by optical microscopy (OM). OM experiments show the spherulites of PBSU become larger with the PVPh content, indicative of a decrease in the nucleation density, and the coarseness of PBSU spherulites increases too with increasing the PVPh content in the blends.  相似文献   

18.
The miscibility of poly(D ,L -lactide) (PDLLA) and poly(p-vinylphenol) (PVPh) blends has been studied by differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR). Phase separation was observed in blends over a wide composition range. A PDLLA-rich phase was found to coexist with an almost pure PVPh phase. The quenched blend samples showed two glass transitions (Tgs), except for a blend with a low PVPh content. However, the Tg value of the PDLLA-rich phase showed a gradual increase with increasing PVPh content. No evidence of interassociation (hydrogen bond formation) between PDLLA and PVPh was found by FTIR. The phase behavior of the blends was simulated using an association model. The results suggested that the equilibrium constant of interassociation between PDLLA and PVPh was small. The phase compositions of the two separated phases were calculated using Fox, Gordon-Taylor, and Couchman equations. The amount of PVPh in the PDLLA-rich phase increased with increasing PVPh content in the blend. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 811–816, 1998  相似文献   

19.
The miscibility of a triblock copolymer poly(ethylene oxide)-poly(dimethylsiloxane)-poly(ethylene oxide) with syndiotactic and isotactic poly(methylmethacrylate) wasstudied. Although isotactic poly(methyl methacrylate) (PMMA) was miscible with poly(ethylene oxide) (PEO) in the pure state, it was immiscible with the PEO end blocks in the copolymer. In comparison, the syndiotactic poly(methyl methacrylate) (sPMMA) was miscible with the PEO blocks as indicated by melting point depression, decrease in crystallinity, and slower rate of spherulite growth of PEO. When blends of the triblock copolymer were cooled to low temperatures, the poly(dimethylsiloxane) (PDMS) middle block which resided in the interlamellar region of PEO spherulites also crystallized; the development of PDMS crystals was clearly suppressed at high sPMMA contents.On leave from Union Chemical Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan  相似文献   

20.
The thermal characteristics of a styrene-ε-caprolactone diblock copolymer, P(S-b-CL), in blends with poly(vinyl methyl ether) (PVME) were studied by DSC. The glass transition temperatures show that PVME is only dissolved in the PCL block. It segregates from the PCL block at low temperatures. The addition of PVME leads to increasing crystallinity of the PCL block in a certain range of composition. However, degrees of crystallinity do not change significantly with crystallization temperature. Optical inspection revealed that the PCL block does not form spherulites. The crystallization kinetics of the PCL block has been systematically studied. The rate constants of crystallization for different blends decrease exponentially with crystallization temperature, whereas the rates of crystallization are scarcely affected by PVME content. The Avrami exponents were found close to two.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号