首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Semifluorinated block copolymers of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(fluorooctyl methacrylates) (PFOMA) were prepared using group transfer polymerisation via sequential monomer addition. Wide ranges of copolymers were obtained with good control over both molecular weight and composition by adjusting the monomers/initiator ratio. The micellar characteristics of the copolymers in water and chloroform were investigated by quasi-elastic light scattering and transmission electron microscopy. The size and morphologies of micelles were greatly influenced by copolymer composition, pH, and temperature. In addition, the solubility of copolymers and the formation of water-in-carbon dioxide (W/C) microemulsions were described in terms of the cloud points. The block copolymers exhibited the excellent ability of stabilizing W/C microemulsions.  相似文献   

2.
Uma Chatterjee 《Polymer》2005,46(24):10699-10708
Amphiphilic di- and tri-block copolymers of poly(methyl methacrylate) (PMMA) and poly(2-dimethylamino)ethyl methacrylate (PDMAEMA) have been synthesized by atom transfer radical polymerization (ATRP) at ambient temperature (35 °C) in the environment-friendly solvent, aqueous ethanol (water 16 vol%) using CuCl/o-phenanthroline as the catalyst. The PDMAEMA blocks are contaminated with ethyl methacrylate (EMA) residues to the extent of 1-2 mol% of DMAEMA depending on the length of the PDMAEMA block. The EMA forms through the autocatalyzed ethanolysis of the DMAEMA monomer and undergoes random copolymerization with the latter. The rate of ethanolysis is unexpectedly greater in the aqueous ethanol than in neat ethanol, which has been attributed to the higher polarity of the former than of the latter. In contrast to the ethanolysis no hydrolysis of DMAEMA in the aqueous ethanol medium could be detected for 133 h. The block copolymers form micelles in water. Their solubility and CMC in neutral water have been studied. Dynamic light scattering (DLS) studies reveal that for a fixed degree of polymerization (DP) of the PMMA block the hydrodynamic diameter of the micelles in methanolic water (water 95 vol%) increases at a faster rate with the DP of the PDMAEMA block when it is much greater than that of the PMMA block compared to when it is less than or close to that of the latter.  相似文献   

3.
Dijun Hu 《Polymer》2005,46(18):7563-7571
A series of well-defined brush-type amphiphilic polystyrene-g-poly(2-(dimethylamino) ethyl methacrylate)) (PS-g-PDMAEMA) copolymers were successfully synthesized via atom transfer radical polymerization (ATRP), using chloromethylated polystyrene (CMPS) as the macroinitiator. The self-assembly behavior of the resulting brush-type copolymers in deionized water and deionized water/acetone (v/v=2/3) mixture was studied by high performance particle sizer (HPPS). The results showed that the Z-average size of the micelles in deionized water increased with the increase of molecular weight of PDMAEMA, and the corresponding size was larger than that in mixed solvent of deionized water and acetone (v/v=2/3). The morphologies of the micelles self-assembled from PS-g-PDMAEMA in selective solvents were studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). When the micelles were prepared in water/acetone (v/v=2/3) mixture and cast them on a glass slide at different temperatures (from 50 up to 200 °C), the transformation of the morphologies of aggregates, from needle-like solid to microcubic particles, was observed using SEM.  相似文献   

4.
Ying Qian Hu  Bong Sup Kim 《Polymer》2007,48(12):3437-3443
The polymerization of 2-(diisopropylamino)ethyl methacrylate (DPA) by RAFT mechanism in the presence of 4-cyanopentanoic acid dithiobenzoate in 1,4-dioxane was studied. The DPA homopolymer was employed as a macro chain transfer agent to synthesize pH-sensitive amphiphilic block copolymers using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as the hydrophilic block. 1H NMR and GPC measurements confirmed the successful synthesis of these copolymers. Potentiometric titrations and fluorescence experiments proved that the copolymers underwent a sharp transition from unimers to micelles at a pH of ∼6.7 in phosphate buffered saline solutions. It was found that the hydrophilic/hydrophobic balance of these block copolymers had no apparent effect on their pH-induced micellization behaviors. The DLS investigation revealed that the micelles have a mean hydrodynamic diameter below 60 nm with a narrow size distribution.  相似文献   

5.
Novel, monodispersed, and well‐defined ABA triblock copolymers [poly(dimethylamino ethyl methacrylate)–poly(ethylene oxide)–poly(dimethylamino ethyl methacrylate)] were synthesized by oxyanionic polymerization with potassium tert‐butanoxide as the initiator. Gel permeation chromatography and 1H‐NMR analysis showed that the obtained products were the desired copolymers with molecular weights close to calculated values. Because the poly(dimethylamino ethyl methacrylate) block was pH‐ and temperature‐sensitive, the aqueous solution behavior of the polymers was investigated with 1H‐NMR and dynamic light scattering techniques at different pH values and at different temperatures. The micelle morphology was determined with transmission electron microscopy. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Three isomeric, linear, equimolar, amphiphilic ABC triblock copolymers comprising methyl methacrylate (MMA, nonionic hydrophobic), 2-(dimethylamino)ethyl methacrylate, (DMAEMA, ionizable hydrophilic) and hexa(ethylene glycol) methacrylate (HEGMA, nonionic hydrophilic) units (10 units in each block) were synthesized by group transfer polymerization (GTP). These were the three block sequence isomers, ABC, ACB and BAC. The corresponding random terpolymer was also prepared. The molecular weights and compositions of all the polymers were characterized by GPC and 1H NMR. Measurements of the hydrodynamic diameters and cloud points of the copolymers in aqueous solution suggest that the various distributions of monomer units in the four terpolymers (the three triblocks and the random) result in different supramolecular structures with different colloidal stabilities.  相似文献   

7.
Ultra-thin films of cationic amphiphilic block and statistical copolymers were applied on silica surfaces from aqueous solutions through electrostatic interactions, and the resulting modification in the wettability of the surfaces was studied. A copolymer series from 2-(dimethylamino)ethyl methacrylate with methyl methacrylate and butyl methacrylate was polymerized by ATRP. Subsequently, the conformation of the polymers in aqueous solutions was studied by surface tension measurements, dynamic light scattering, 1H NMR and cryogenic transmission electron microscopy. Unimeric conformation, equilibrium micelles or frozen micellar structures were observed, depending on polymer composition and the ionic strength of the solution. The polymers were applied on silica from aqueous solutions by either spin coating or adsorption. The formed ultra-thin film surfaces were studied by AFM and water contact angle measurements. The spin-coated surfaces were highly hydrophilic with rapidly dropping contact angles, whereas the surfaces prepared by adsorption had stable water contact angles between 30-60°, depending on polymer. The difference between the spin-coated and adsorbed surfaces is explained by the formation of a monolayer in the adsorbed surfaces.  相似文献   

8.
This paper describes the free radical dispersion homopolymerisation of 2-(dimethylamino) ethyl methacrylate (DMA) and copolymerisation of DMA with methyl methacrylate (MMA) in supercritical carbon dioxide (scCO2). The polymerisations are performed in the presence of two commercially available stabilisers, poly(dimethylsiloxane) monomethacrylate macromonomer (PDMS-mma) and the carboxylic acid terminated perfluoropolyether (Krytox 157FSL). Dry, fine powdered polymer product was produced for the copolymer under optimised conditions, but only aggregated solid is formed for homo poly(DMA). The effect of reaction time, stabiliser, copolymer composition and reaction pressure on the yield, molecular weight and morphology of the copolymers has been investigated.  相似文献   

9.
Jan M.D. Heijl 《Polymer》2004,45(20):6771-6778
Multi-responsive microgels based on poly(2-(N,N-dimethylamino)ethyl methacrylate) were developed and their properties were investigated. The primary goal of this research was to speed up the stimulus-response time of the hydrogels to a level usable for actuator applications, by reducing the diffusion distance of water. The gels were prepared by a UV induced photodimerization of a copolymer of 2-(dimethylamino)ethyl methacrylate and 4-cinnamoyl-phenyl methacrylate. Patterning studies showed that these materials can be used as photo-resist materials with high resolution at short exposure times. They showed lower critical solution temperature behavior in water, as well as pH dependent solubility and swelling ratios. While 1 mm thick gels showed response times to temperature and pH-changes of several hours, Si-supported microgels of 300 nm thickness had response times in the range of only a few seconds. The copolymer was prepared by free radical copolymerization, and the reactivity ratios were determined with the extended Kelen Tudos method. Spin-coating of this copolymer on Si supports and subsequent UV-irradiation yielded microgels of variable thickness (200 nm-15 μm), which was determined by confocal scanning laser microscopy. Surface plasmon resonance spectroscopy measurements demonstrated the fast, stimuli-responsive swelling behavior, while differential scanning calorimetry gave insight into the morphology of the networks.  相似文献   

10.
Andrew B. Lowe  Ran Wang 《Polymer》2007,48(8):2221-2230
We report herein the synthesis of hydrophilic-hydrophilic AB diblock copolymers of 3-O-methacryloyl-d-galactopyranose (MAGP) with 2-(dimethylamino)ethyl methacrylate (DMAEMA). These materials were obtained from precursor AB diblock copolymers of 3-O-methacryloyl-1,2:3,4-di-O-isopropylidene-d-galactopyranose (MAIpGP) and DMAEMA. The well-defined precursor block copolymers were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization in organic media employing dithiobenzoates as the mediating agents. We show that the homopolymerization of MAIpGP proceeds in a controlled fashion as judged by the linear pseudo-first-order kinetic plot, the linear relationship between the number average molecular weight (Mn) and the degree of conversion, and the resulting low polydispersity indices. Homopolymers of MAIpGP were employed as macro chain transfer agents for the preparation of the target AB diblock copolymers with DMAEMA. We show that PMAIpGP homopolymers are readily and quantitatively converted to the corresponding poly(3-O-methacryloyl-d-galactopyranose) (PMAGP) species according to a literature procedure. In a control experiment we demonstrate that these deprotection conditions do not adversely affect a DMAEMA homopolymer.  相似文献   

11.
The temperature-swing adsorption (TSA) of heavy metal ions onto 2-(dimethylamino)ethyl methacrylate (DMAEMA) gel has been examined. The DMAEMA gel adsorbs precious metal ions (Pt(IV), Au(III), and Pd(II)) in HCl aqueous media as a result of the electrostatic interactions between the protonated amino groups in the gel and the anionic chloro complexes, while it is inactive against Cu(II) and Ni(II) cations. The amount of Pt(IV) ions adsorbed onto the DMAEMA gel decreases linearly with an increase in temperature. The TSA operation was successfully carried out; the DMAEMA gel repeatedly adsorbed and desorbed Pt(IV) ions in the temperature-swing operation between 20 °C and 60 °C. The TSA technique using the DMAEMA gel is simple, environment-friendly, and potentially applicable in various separation processes for precious metals in industries.  相似文献   

12.
Summary Polyvalent iodine compounds such as diacetoxyiodobenzene, (CH3COO)2IC6H5 (DAI), and bis(trifluoroacetoxy) iodobenzene, (CF3COO)2IC6H5 (BTI), are efficient initiators of cationic and radical polymerizations. To confirm the radical mechanism of DAI-induced polymerization of methyl methacrylate (MMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA), a study has been performed in the presence of the radical inhibitor 2,3,5,6-tetrachloro-p-benzoquinone (TCQ) and its complex with triethylamine (TEA). The polymerization kinetics and the effect of irradiation intensity have been studied.  相似文献   

13.
This work focuses on the synthesis and self-assembly of biodegradable and anionic double hydrophilic diblock copolymers (DHBCs) poly(ethylethylene phosphate)-block-poly[2-(succinyloxy)ethyl methacrylate] (PEEP-b-PSEMA) with different molecular weights and compositions, which were prepared via a combination of ring opening polymerization (ROP), atom transfer radical polymerization (ATRP) and polymer reaction. The chemical structures of these well-defined diblock copolymers were confirmed by 1H NMR and FT-IR analyses. GPC results indicated that the copolymers showed symmetric peak and relatively narrow polydispersities. Subsequently, pH-responsive micellization behaviors of PEEP-b-PSEMA diblock copolymers were investigated by fluorescence probe method, dynamic light scattering (DLS) and transmission electron microscopy (TEM) measurements. The results demonstrated that these diblock copolymers were able to self-assemble into micelles with various sizes depending on the variation of pH values. Naproxen (NAP), a poorly water-soluble drug, was selected as the model drug and encapsulated into the core of micelles via dialysis method. The in vitro release behavior of NAP from these micelles was pH-dependent and could be accelerated in the presence of phosphodiesterase I which could promote the degradation of polyphosphoesters. Cytotoxicity tests by MTT assay showed that these block copolymers possessed favorable biocompatibility against HeLa cells, revealing that this kind of biodegradable, biocompatible and pH-responsive block copolymer would be served as a promising material for drug delivery.  相似文献   

14.
The micellization of ionic amphiphilic diblock copolymers, polyisobutylene-block-poly(methacrylic acid) (PIB-b-PMAA), with a constant degree of polymerization of the non-ionic block and various degrees of polymerization of the polyelectrolyte block was examined in aqueous media by means of fluorescence spectroscopy using pyrene as a polarity probe. The molar values of the critical micellization concentration (cmc) were found to be around 2×10−6 mol/l, being nearly independent of the length of the polyelectrolyte block as well as pH (in the range 6-9) and ionic strength (≤0.5 M NaCl) while the specific cmc values varied from 20 to 100 mg/l. Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) experiments provided evidence that aggregation numbers and hydrodynamic radii of the formed copolymer micelles are sensitive to variations of pH and ionic strength, indicating that these micelles might be ‘dynamic’ rather than ‘frozen’ ones. It was also shown by means of a combination of turbidimetry, analytical ultracentrifugation, fluorescence spectroscopy, SANS, and DLS that the formed copolymer micelles mixed with a strong cationic polyelectrolyte, poly(N-ethyl-4-vinylpyridinium bromide) at charge ratio Z=[+]/[−] not exceeding a certain critical value ZM<1, generate peculiar water-soluble micellar complex onion-like species, each containing a two-phase hydrophobic nucleus and a hydrophilic corona. The nucleus consists of a PIB core and a shell assembled from the fragments of water-insoluble interpolyelectrolyte complex. The corona is formed by the excess fragments of poly(sodium methacrylate) blocks not involved in complexation with poly(N-ethyl-4-vinylpyridinium bromide).  相似文献   

15.
Narrow‐distribution, well‐defined comb‐like amphiphilic copolymers are reported in this work. The copolymers are composed of poly(methyl methacrylate‐co‐2‐hydroxyethyl methacrylate) (P(MMA‐co‐HEMA)) as the backbones and poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA) as the grafted chains, with the copolymer backbones being synthesized via atom‐transfer radical polymerization (ATRP) and the grafted chains by oxyanionic polymerization. The copolymers were characterized by gel permeation chromatography (GPC), Fourier‐transform infrared (FT‐IR) spectroscopy and 1H NMR spectroscopy. The aggregation behavior in aqueous solutions of the comb‐like amphiphilic copolymers was also investigated. 1H NMR spectroscopic and surface tension measurements all indicated that the copolymers could form micelles in aqueous solutions and they possessed high surface activity. The results of dynamic light scattering (DLS) and scanning electron microscopy (SEM) investigations showed that the hydrodynamic diameters of the comb‐like amphiphilic copolymer aggregates increased with dilution. Because of the protonizable properties of the graft chains, the surface activity properties and micellar state can be easily modulated by variations in pH. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
A series of copolymers containing different ratios of methyl methacrylate and 2-(dimethylamino)ethyl methacrylate has been synthesised by conventional free radical polymerisation. These copolymers have been converted into a series of novel salts by reaction with the acid monomers, methacrylic acid, methacryloyloxyethyl phosphate and vinyl phosphonic acid. The copolymers and the corresponding salts have been characterised fully by a range of spectroscopic and thermal analysis techniques. The nature of the salt has a characteristic effect on the thermal degradation of the polymer. The presence of the phosphorus monomers leads to formation of residual char, even at temperatures as high as 1000 °C.  相似文献   

17.
A novel quaternary amine methacrylate monomer (QAMA) was synthesized by amination of dimethacrylate with piperazine followed by its quaternization using an alkyl iodide. Copolymerization of QAMA with 2‐hydroxyethyl methacrylate was carried out by free radical bulk polymerization technique at room temperature using ammonium persulfate and N,N,N′,N′‐tetramethyl ethylenediamine as a redox initiator. The monomer as well as copolymers was characterized by FTIR and 1H NMR spectral studies. Thermal and physical characteristics of copolymers of varying compositions of QAMA were evaluated by thermogravimetric analysis, differential calorimetry, contact angle and scanning electron microscopy. The antibacterial activity of the synthesized quaternary amine dimethacrylate copolymers against Escherichia coli and Staphylococcus aureus was studied by zone of inhibition and colony count method. QAMA copolymers showed broad‐spectrum contact killing antibacterial properties without releasing any active agent as checked by iodide‐selective ion meter. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1038–1044, 2006  相似文献   

18.
A series of near-monodisperse diblock copolymers of 2-(N-carbazolyl)ethyl methacrylate and 2-(dimethylamino)ethyl methacrylate (DMAEMA) of relatively low molecular weights (2600-24,000 g mol−1) were synthesized by group transfer polymerization using tetrahydrofuran (THF) as a solvent. The molecular weight distributions and compositions of all the copolymers were obtained using gel permeation chromatography (GPC) in THF and proton nuclear magnetic resonance (1H NMR) spectroscopy, respectively. Differential scanning calorimetry and thermal gravimetric analysis provided low glass transition temperatures (Tgs) of about 60 °C and decomposition temperatures between 320 and 450 °C for the copolymers, respectively. The three copolymers with the highest DMAEMA content were water-soluble below pH 7. Aqueous GPC at pH 3 showed that the water-soluble block copolymers formed micelles with apparent number average molecular weights above 100,000 g mol−1.  相似文献   

19.
Amphiphilic block copolymers possess both hydrophobic and hydrophilic properties and can form versatile micellar structures in aqueous solution. The aim of the research presented was to prepare a series of non‐ionic amphiphilic diblock polyurethane copolymers (PUn) based on isophorone diisocyanate, monoallyl‐end‐capped poly(ethylene oxide) and poly(propylene oxide) (PPO), followed by an investigation of their micellization properties and morphology transformation in aqueous solution. The PUn samples were synthesized by condensation polymerization. These polyurethanes exhibit surface tension as low as 33.7–37.0 mN m?1. There is an obvious decrease in critical micelle concentration as the hydrophobic PPO molecular weight increases. According to transmission electron microscopy, the morphology of aggregates of the copolymers can be tuned by varying the concentration in aqueous solution rather than organic solvent. For example, for PU7, large compound micelles are produced instead of vesicles. For PU17, the concentration can be used to control the size and thickness of vesicles. Vesicle size increases from 60 to 500 nm and vesicle thickness from 40 to 60 nm with concentration ranging from 0.003 to 0.03 wt%. The study shows that the copolymers in aqueous solution have excellent surface activities. In addition, they can self‐assemble into large compound micelles or vesicles at certain concentrations. Moreover, the synthesis method described allows one to obtain a desired morphology of aggregates by adjusting the composition of hydrophilic and hydrophobic segments, which provides a novel and simple way to obtain particles on the nanometer scale. Copyright © 2010 Society of Chemical Industry  相似文献   

20.
Positively chargeable nanocomposite hydrogels (NC gels) were synthesized by in situ copolymerization of acrylamide (AM) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) in an aqueous suspension of hectorite clay Laponite XLS. The stability of the Laponite suspension containing DMAEMA was monitored by its transmittance, viscosity and zeta potential. The polymerization was initiated either by redox or UV radiation to fabricate the NC gels. Elongation at break and tensile strength decreased with increasing DMAEMA content in monomers up to 17 mol%. As expected from the protonation of DMAEMA, the NC gels containing more than 5 mol% DMAEMA showed pH-responsive swelling; the gels were swollen at pH < 4 and shrunken at pH > 4. In comparison with the redox-initiated NC gels, the UV-initiated NC gels possessed a more homogeneous structure with higher transmittance, better mechanical properties, and a larger equilibrium swelling ratio at pH < 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号