首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Layered double hydroxides (LDHs)/epoxy nanocomposites were prepared by mixing the amino laurate intercalated LDHs, EPON 828 resin, and Jeffamine D400 as a curing agent. The organo-modified LDHs with hydrophobic property easily disperse in epoxy resin, and the amino laurate intercalated LDHs with large gallery space allow the epoxy molecules and the curing agents to easily diffuse into the LDHs galleries at elevated temperature. After the thermal curing process, the exfoliated LDHs/epoxy nanocomposites were formed. X-ray diffraction was used to detect the formation process of the exfoliated LDHs/epoxy nanocomposites. TEM was used to observe the dispersed behavior of the LDHs nanolayers, and the LDHs nanolayers were exfoliated and well dispersed in these nanocomposites. Owing to the reaction between the amine groups of the intercalated amino laurate and epoxy groups, the adhesion between the LDHs nanolayers and epoxy molecules makes these LDHs/epoxy nanocomposites more compatible. Consequently, the tensile properties from tensile test and the mechanical properties from DMA were enhanced, and the Tg of these nanocomposites from DMA and TMA were increased. Coefficients of thermal expansion (CTEs, below and above Tg) of these nanocomposites from TMA decreased with the LDHs content. The thermal stability of these nanocomposites was enhanced by the well dispersed LDHs nanolayers.  相似文献   

2.
Yong Ni  Kangming Nie 《Polymer》2004,45(16):5557-5568
The organic-inorganic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes (POSS) were prepared via in situ polymerization of diglycidyl ether of bisphenol A (DGEBA) and 4,4′-diaminodiphenylmethane (DDM) in the presence of the two structurally similar POSS monomers. The organic groups on silsesquioxane cage are aminophenyl and nitrophenyl groups, respectively. The curing reactions were started from the initially homogeneous mixture of DGEBA, DDM and the POSS cages. The inorganic-organic hybrids containing up to 20 wt% of POSS were obtained. The morphologies of the resulting hybrids were quite dependent on the types of R groups in the POSS monomers. The phase separation induced by polymerization occurred in the hybrids containing octanitrophenyl POSS (OnpPOSS) and the spherical particles of POSS-rich phase (<0.5 μm in diameter) were uniformly dispersed the continuous epoxy matrix as shown by scanning electronic microscopy. In marked contrast to the OnpPOSS-containing hybrids, the octaaminophenyl POSS (OapPOSS)-containing nanocomposites exhibited a homogeneous morphology. Differential scanning calorimetry and dynamic mechanical analysis showed that the glass transition temperatures (Tg) of the POSS-containing hybrids were lower than that of the control epoxy. The moduli of glass states for the hybrids are significantly higher than that of the control epoxy. For the OapPOSS epoxy nanocomposites the storage moduli of the rubbery plateau were higher than that of the control epoxy when the contents of POSS are less than 20 wt%, indicating the nanoreinforcement effect of POSS cages. Thermogravimetric analysis indicates that the thermal stability of the polymer matrix was not much sacrificed by introducing a small amount of POSS, whereas the properties of oxidation resistance of the materials were significantly enhanced. The OapPOSS epoxy nanocomposites displayed more pronounced improvement than the OnpPOSS hybrids, which could be ascribed to the nanoscaled dispersion of POSS cages and the formation of tether structure of POSS cages with epoxy matrix.  相似文献   

3.
This paper investigates the possibility of improving the mechanical properties of high-functionality epoxy resins through dispersion of octadecyl ammonium ion-modified layered silicates within the polymer matrix. The different resins used are bifunctional diglycidyl ether of bisphenol-A (DGEBA), trifunctional triglycidyl p-amino phenol (TGAP) and tetrafunctional tetraglycidyldiamino diphenylmethane (TGDDM). All resins are cured with diethyltoluene diamine (DETDA). The morphology of the final, cured material was probed by wide-angle X-ray scattering, as well as optical and atomic force microscopy. The α- and β-relaxation temperatures of the cured systems were determined using dynamic mechanical thermal analysis. It was found that the presence of organoclay steadily decreased both transition temperatures with increasing filler concentration. Further, the effect of different concentrations of the alkyl ammonium-modified layered silicate on the toughness and stiffness of the different epoxy resins was analyzed. All resin systems have shown improvement in both toughness and stiffness of the materials through the incorporation of layered silicates, despite the fact that it is often found that these two properties cannot be simultaneously achieved.  相似文献   

4.
Graphene has captured the attention of scientific community due to recently emerging high performance applications. Hence, studying its reinforcing effects on epoxy resin is a significant step. In this study, microwave exfoliated reduced graphene oxide (MERGO) was prepared from natural graphite for subsequent fabrication of epoxy nanocomposites using triethylenetetramine (TETA) as a curing agent via in-situ polymerization. Thermogravimetric analysis (TGA), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), C13 NMR spectroscopy, X-ray photoelectron spectroscopy (XPS) and ultraviolet–visible (UV–vis) spectroscopy were employed to confirm the simultaneous reduction and exfoliation of graphene oxide. The reinforcing effect of MERGO on epoxy resin was explored by investigating its static mechanical properties and dynamic mechanical analysis (DMA) at MERGO loadings of 0 to 0.5 phr. The micro-structure of epoxy/MERGO nanocomposites was investigated using scanning electron microscope (SEM), transmission electron microscope (TEM) and XRD techniques. The present work reports an enhancement of 32%, 103% and 85% in tensile, impact and flexural strength respectively of epoxy by the addition of even 0.25 phr MERGO. At this loading elastic and flexural moduli also increased by 10% and 65%, respectively. Single-edge-notch three-point-Bending (SEN-TPB) fracture toughness (KIC) measurements were carried out where a 63% increase was observed by the introduction of 0.25 phr MERGO. The interfacial interactions brought about by graphene also benefited the dynamic mechanical properties to a large extent in the form of a significant enhancement in storage modulus and slightly improved glass transition temperature. Considerable improvements were also detected in dielectric properties. The epoxy nanocomposite also attained an ac conductivity of 10−5 S/m and a remarkable increase in dielectric constant. The simple and cost effective way of graphene synthesis for the fabrication of epoxy/MERGO nanocomposites may be extended to the preparation of other MERGO based polymer nanocomposites. This remarkable class of materials has thrown open enormous opportunities for developing conductive adhesives and in microelectronics.  相似文献   

5.
以11-氨基十一酸和湿态白炭黑为原料,通过原位聚合的方法制备了尼龙11/白炭黑纳米复合材料,并用红外光谱仪和扫描电子显微镜等研究了纳米复合材料的形态结构、力学性能和阻隔性能。结果显示,当白炭黑含量增加时,拉伸强度和弯曲强度先显增大趋势;当白炭黑质量分数达到8%时,拉伸、弯曲强度达到最大值;之后,拉伸、弯曲强度开始减小。断裂伸长率则一直减小,无明显变化。尼龙11及其纳米复合材料的常温冲击强度也随着白炭黑含量的增加逐渐降低。此外,白炭黑的加入极大地提高了复合材料的阻隔性能。  相似文献   

6.
Polyvinyl acetate (PVAc) nanocomposites for wood adhesives containing different amounts of colloidal silica nanoparticles (CSNs) were synthesized via in situ one-step emulsion polymerization. The adhesion strength of wood specimens bonded by PVAc nanocomposites was investigated by the tensile test. Thermal properties of PVAc nanocomposites were also characterized by differential scanning calorimetry and thermogravimetric analysis. Rheological and morphological properties of the PVAc nanocomposites were investigated using rheometric mechanical spectrometry and field emission scanning electron microscopy (FESEM), respectively. The obtaining results showed that the shear strength of PVAc nanocomposite including 1 wt. % CSNs has the highest shear and tensile strength about 4.7 and 3.2 MPa, respectively. A small increment of Tg (~3 °C) and considerable increment of the ash content proved the enhancement of PVAc thermal characterization in the presence of CSNs. FESEM results showed uniform dispersion of nanoparticles throughout the PVAc matrix due to using the in situ emulsion polymerization process. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48570.  相似文献   

7.
以水性环氧树脂乳液和水性硅溶胶作为成膜基料,添加防锈颜填料,制备了一种有机-无机水性复合防腐涂料。研究了防腐涂料的腐蚀速率以及水性硅溶胶用量对涂层在不同腐蚀介质中的耐蚀性,及其表干时间、实干时间、硬度、附着力和耐盐雾性的影响,通过电化学方法确定了涂层的最佳厚度。结果表明:当防闪锈剂添加量为1%(w)、颜基比为20%(w)、水性硅溶胶的质量占水性环氧树脂质量的15%、漆膜厚度为180μm时,所制复合水性防腐涂料具备良好的耐水、耐碱、耐盐雾性。  相似文献   

8.
Yonghong Liu  Kangming Nie 《Polymer》2005,46(25):12016-12025
The POSS-containing nanocomposites of epoxy resin were prepared via the co-curing reaction between octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane (OpePOSS) and the precursors of epoxy resin. The curing reactions were started from the initially homogeneous ternary solution of diglycidyl ether of bisphenol A (DGEBA), 4,4′-Diaminodiphenylmethane (DDM) and OpePOSS. The nanocomposites containing up to 40 wt% of POSS were obtained. The homogeneous dispersion of POSS cages in the epoxy matrices was evidenced by scanning electronic microscopy (SEM), transmission electronic microscopy (TEM) and atomic force microscopy (AFM). Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) showed that at the lower POSS concentrations (<30 wt%) the glass transition temperatures (Tgs) of the nanocomposites almost remained invariant whereas the nanocomposites containing POSS more than 40 wt% displayed the lower Tgs than the control epoxy. The DMA results show that the moduli of the nanocomposites in glass and rubbery states are significantly higher than those of the control epoxy, indicating the nanoreinforcement effect of POSS cages. Thermogravimetric analysis (TGA) indicates that the thermal stability of the polymer matrix was not sacrificed by introducing a small amount of POSS, whereas the properties of oxidation resistance of the materials were significantly enhanced. The improved thermal stability could be ascribed to the nanoscaled dispersion of POSS cages and the formation of tether structure of POSS cages with epoxy matrix.  相似文献   

9.
High performance silanized silica/epoxy nanocomposites were prepared through mixing epoxy, tetraethyl orthosilicate (TEOS), (3-aminopropyl)trimethoxysilane (APTMS) and ammonia solution at 50 °C. This all-in-one “Solvent-Free One-Pot Synthesis” results in nanocomposites with uniform dispersion of oval shaped silica nanoparticles and strong adhesion between silica and epoxy matrix. The influence of the synthesis conditions, such as molar ratio of NH3:TEOS, aging time, curing process and silica content on the thermal mechanical properties of nanocomposites were studied. The silanized silica/epoxy nanocomposite prepared in this study exhibits better thermal mechanical property in comparison with neat epoxy, non-functionalized silica/epoxy and commercialized silica/epoxy systems. The prepared nanocomposite with 3 wt% silanized silica exhibits 20%, 17% and 6% improvements on flexural, tensile and storage modulus over those of neat epoxy, respectively.  相似文献   

10.
总结了硅溶胶结合不定形耐火材料(包括浇注料、捣打料、喷射料和压入料)的性能研究和应用现状,并展望了硅溶胶结合耐火材料技术研究的方向和前景。  相似文献   

11.
Aqueous spherical colloidal silica (CS) particles with a diameter of 15 ± 5 nm were modified with three different types of monofunctional silane coupling agents to prepare functionalized colloidal silica (FCS) particles. The effects of the surface chemistry of the FCS were studied as a function of the CS/FCS loading in the poly(dimethyl siloxane) (PDMS) polymer. The prepared PDMS–CS/FCS composites were investigated for their physical properties both in the cured and uncured states. The extent of filler–filler and filler–polymer interactions was found to vary with the type of functionalizing agent used to treat the surface of the CS. The filler–filler interaction appeared to be predominant in the PDMS–CS composites, and improved filler–polymer interaction was indicated in the case of the PDMS–FCS composites. The composites containing CS treated with methyltrimethoxysilane exhibited relatively better optical and mechanical properties compared to the other PDMS–FCS composites. This study highlighted the importance of judiciously choosing functionalizing agents to achieve PDMS–FCS composites with predetermined optical and mechanical properties. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
Ding-Ru Yei 《Polymer》2004,45(8):2633-2640
We have prepared polystyrene/clay nanocomposites using an emulsion polymerization technique. The nanocomposites were exfoliated at up to a 3 wt% content of pristine clay relative to the amount of polystyrene (PS). We used two different surfactants for the montmorillonite: the aminopropylisobutyl polyhedral oligomeric silsesquioxane (POSS) and the ammonium salt of cetylpyridinium chloride (CPC). Both surfactants can intercalate into the layers of the pristine clay dispersed in water prior to polymerization. Although the d spacing of the POSS-intercalated clay is relatively smaller than that of the CPC-intercalated clay, PS more easily intercalates and exfoliates the POSS-treated clay than the CPC-treated clay. IR spectroscopic analysis further confirms the intercalation of POSS within the clay layers. We used X-ray diffraction (XRD) and transmission electron microscopy (TEM) to characterize the structures of the nanocomposites. The nanocomposite prepared from the clay treated with the POSS containing surfactant is exfoliated, while an intercalated clay was obtained from the CPC-treated surfactant. The molecular weights of polystyrene (PS) obtained from the nanocomposite is slightly lower than the virgin PS formed under similar polymerization conditions. The value of Tg of the PS component in the nanocomposite is 8 °C higher than the virgin PS and its thermal decomposition temperature (21 °C) is also higher significantly. The presence of the POSS unit in the MMT enhances the thermal stability of the polystyrene.  相似文献   

13.
Preparation and properties of polypropylene/org-attapulgite nanocomposites   总被引:4,自引:0,他引:4  
Lihua Wang  Jing Sheng 《Polymer》2005,46(16):6243-6249
Polypropylene (PP)/org-attapulgite (ATP) nanocomposites were prepared by melt blending in a mixer apparatus. Org-attapulgite was attained by silane coupling agent modification first and then graft-polymerization with butyl acrylate. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to assess the clay morphology and the dispersion of the org-attapulgite, respectively. The changes of crystalline structure for PP nanocomposites were characterized by X-ray diffraction (XRD). The mechanical properties of PP/attapulgite nanocomposites were studied through tensile and impact tests. The thermal and dynamic mechanical properties were characterized by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The strength and stiffness of PP/org-ATP nanocomposites were both improved significantly in the presence of organic attapulgite. In addition, the incorporation of org-ATP also gave rise to an increase of the storage modulus and the changes of the glass transition temperature for PP composites. TEM and XRD results revealed the addition of attapulgite did not change the crystal structure of PP, however org-attapulgite acted as nucleating agents for the crystallization of PP.  相似文献   

14.
Surface-modified colloidal silica (M-CS) nanoparticles were successfully synthesized from colloidal silica (CS) and methyltrimethoxysilane using sol–gel method and characterized by Fourier transform-infrared spectroscopy. Both CS and M-CS were then incorporated into acrylic adhesives. M-CS particles in 2-ethoxyethanol had similar particle size to pure CS based on the characterization by DLS. The morphologies of M-CS particles in acrylic adhesives examined by TEM showed more homogeneous dispersities than that of pure CS which were aggregated and phase separated in acrylic adhesives. In addition, the thermal properties of the nanocomposite acrylic adhesives determined by thermogravimetric analyses and differential scanning calorimetry showed higher glass transition temperature and thermal properties than pure acrylic adhesives. Finally, the 180° peel strength of nanocomposite acrylic adhesives was higher than pure adhesives with improved durabilities.  相似文献   

15.
Biobased thermoset resins were irradiated with ultraviolet (UV) radiation in the presence of photoinitiators. Three different resins were evaluated—two resins were based on soybean oil and one was based on lactic acid. The cross-linking behaviour of these resins was characterized by real-time FTIR and Soxhlet extraction. All of the resins cured rapidly and formed rigid materials with a high degree of conversion. The cross-linked resins were characterized by mechanical testing, thermogravimetric analysis (TGA) as well as dynamic-mechanical thermal analysis (DMTA). The resins were reinforced with layered silicate, in order to form nanocomposite structures. The resulting composites were characterized by DMTA and tensile testing.  相似文献   

16.
In this study, water reducible alkyd resins containing different amounts of colloidal silica were synthesized for the first time. In order to achieve this, alkyd resin, which has an oil content of 35%, was prepared with tall oil fatty acid, isophthalic acid, trimellitic anhydride, and trimethylolpropane. The alkyd resin was neutralized with triethylamine, and was dissolved in an isobutyl alcohol-isopropyl alcohol-butyl glycol mixture to produce 75% (wt.) solution, which was called stock alkyd resin. The stock alkyd resin was diluted with water to 50% (wt.) concentration with water and colloidal silica mixture in order to prepare an alkyd solution containing 0%, 5%, 10%, 15% and 20% colloidal silica. Then the effect of the silica nanoparticle addition on the surface coating properties, thermal behaviors and surface morphologies of water reducible alkyd resins was investigated. As a result, the addition of colloidal silica has improved surface coating properties and thermal behaviors of nanocomposite water reducible alkyd resin.  相似文献   

17.
Poly(ethylene terephthalate) (PET)/silica nanocomposites were fabricated by direct polymerizing PET monomer dispersed with organic modified silica nanoparticles. The characteristics and properties of these nanocomposites were investigated by the transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis, respectively. The results show that (1) the nanoparticles have been well dispersed in the polymer matrix; (2) the addition of nanoparticles can speed up the crystallization and melting point; and (3) the addition has no significant effect on the synthesis process. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1229–1232, 2004  相似文献   

18.
Photofunctional polymer as silane coupling agent (PFD) was prepared by free radical copolymerization of 4‐vinylbenzyl N,N‐diethyldithiocarbamate (VBDC) and methyl methacrylate (MMA) in the presence of (3‐mercaptopropyl)trimethoxysilane (MPMS) as chain transfer agent. Next, silane (SiO2; the average diameter Dn = 192 nm) nanoparticles was surface‐modified with PFD and 3‐(trimethoxysilyl)propyl methacrylate (γ‐MPS) by covalent bond formed between silanol groups and silane coupling agents. The PFD and γ‐MPS functionalizations changed the silica surface into hydrophobic nature and provided grafting initiation sites and methacrylate terminal groups respectively. We performed the construction of hybrid nanocomposites by using these modified SiO2 nanoparticles. It was found from electron microscopy observations that SiO2 particles were packed into repeating cubic arrangements in a poly(methyl methacrylate) (PMMA) matrix such as colloidal crystals. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
一种新型环氧树脂流变改性剂—纳米SiO2   总被引:8,自引:0,他引:8  
王霞  李姜 《粘接》2000,21(1):24-26
通过溶胶-凝胶的方法在环氧树脂中制备了纳米SiO2相。含2.7%纳米SiO2的树脂屈服应力为200-500Pa,而含相同质量气相SiO2的树脂则测不出屈服应力。引入纳米SiO2可使环氧树脂胶粘剂具有很好的抗流淌性,且不降低其胶接性能。  相似文献   

20.
A series of functional polyhedral oligomer silsesquioxnae (POSS)/polyimide (PI) nanocomposites were prepared using a two-step approach, first, the octa(aminophenyl)silsesquioxane (OAPS)/NMP solution was mixed with polyamic acid (PAA) solution prepared by reacting 4,4′-diaminodiphenylmethane and 3,3′,4,4′-benzophenonetetracarboxylic dianhydride in NMP, and second, the polycondensation solution was treated by thermal imidization. The well-defined ‘hard particles’ (POSS) and the strong covalent bonds between the PI and the ‘hard particles’ lead to a significant improvement in the thermal mechanical properties of the resulting nanocomposites. The glass transition temperature dramatically increases while the coefficient of thermal expansion (CTE) decreases, owing to the significant increase of the cross-linking density in the PI-POSS nanocomposites. The thermal stability and mechanical property of the nanocomposites were also improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号