首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The superstructures of oxyethylene/oxybutylene block copolymers with different compositions and architectures (EmBn, BnEmBn and EmBnEm) were studied using polarized optical microscopy (POM). Several novel superstructures, such as fibril crystals and different frontiers of spherulites and crystallized regions, have been observed. It is found that the ability of forming spherulites is reduced with the decrease in the volume fraction of the crystallizable block. The unfavorable interaction between the blocks, which can be indicated by order-disorder transition temperature (TODT), also affects the formation of superstructure. The BnEmBn triblock copolymers exhibit the strongest ability of organization into spherulites, whereas the EmBnEm triblock copolymers show the weakest ability of organization into spherulites.  相似文献   

2.
We have investigated the size dependence of crystallization within spherical microdomains formed in various poly(ε-caprolactone)-block-polybutadiene diblock copolymers (PCL-b-PB). The crystallinity (χ) and melting temperature (Tm) of the PCL block are considerably lower than those of PCL homopolymer, and χ decreases steadily and Tm decreases only slightly with decreasing radius of PCL spheres (R) for a series of PCL-b-PB with a same molecular weight (Mn). When PCL-b-PB is compared with the similar R but different Mn, χ is significantly different, suggesting that the sphere size is not the unique factor to control crystallization within spherical microdomains.  相似文献   

3.
The thin films of a symmetric crystalline-coil diblock copolymer of poly(l-lactic acid) and polystyrene (PLLA-b-PS) formed lamellae parallel to the substrate surface in melt. When annealed at temperatures well above the glass transition temperature of PLLA block (TgPLLA), the PLLA chains started to crystallize, leading to reorientation of lamellae. Such reorientation behavior exhibited dependence on the correlation between the crystallization temperature (Tc), the glass transition temperature of PS (TgPS), the peak melting point of PLLA crystals (TmPLLA), and the end melting point of PLLA crystals (Tm,endPLLA). When annealed at (Tc=) 80 °C (Tc < TgPS < TODT, order-disorder transition temperature), 123 °C (TgPS < Tc < TmPLLA < TODT), 165 °C (TgPS < TmPLLA < Tc < Tm,endPLLA < TODT), the parallel lamellae became perpendicular to the substrate surface, exclusively starting at the edge of surface relief patterns. Meanwhile, the corresponding lamellar spacing was significantly enhanced. The PLLA crystallization between PS layers was hypothesized to account for the lamella reorientation during annealing. The crystallization, chain conformation, and possible chain folding mechanisms were discussed, based on detailed analysis of the lamellar structure before and after crystallization.  相似文献   

4.
The liquid‐crystalline ordering and fluidity of energetic diblock copolymers based on poly[3,3‐bis(azidomethyl) oxetane] (BAMO) and 3‐nitratomethyl‐3′‐methyloxetane (NMMO) were investigated by the dissipative particle dynamics method. The results show that these copolymers, with moderate BAMO block lengths (x's), experienced the disorder, nematic, and smectic phases with decreasing temperature. The nematic phase was suppressed when the rod length was too long or short. After the formation of the smectic phase, the fluidity had a sharp decline. The temperature forming the smectic phase was defined as the order–disorder transition temperature (TODT) and depended strongly on x. A simple scaling rule, TODTe?x, between TODT and x was constructed. The effect of the soft NMMO block fraction on the fluidity emerged before the formation of the smectic phase. These results can help researchers design and synthesize new energetic copolymers with an appropriate melting temperature range for use as binders of solid propellants. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
6.
Bokyung Kim  Jong Hak Kim  Jehan Kim 《Polymer》2009,50(15):3822-291
We report the transition behavior and the ionic conductivity of ion-doped amorphous block copolymer, based on two compositionally different polystyrene-block-poly(2-vinylpyridine) copolymers (PS-b-P2VPs) that can self-assemble into nanostructures, where P2VP block is ionophilic to lithium perchlorate (LiClO4). The transition temperatures of LiClO4-doped PS-b-P2VP, like the order-to-disorder transition (TODT), were measured by small-angle X-ray scattering (SAXS) and depolarized light scattering (DPLS). The selective ionic coordination to the nitrogen units of P2VP block leads to the increase of the repulsive interactions between two block components from weak- to strong-segregation regime with increasing amount of LiClO4, which results subsequently in the increased TODT. However, for a compositionally asymmetric PS-b-P2VP under lamellar morphology, the ionic conductivity by the addition of LiClO4 was remarkably increased at higher temperatures, representing that the effective ionic coordination at the greater volume fraction of P2VP block component improves the ionic conductivity as the temperature approaches to a rubbery phase.  相似文献   

7.
The morphology of as-cast and annealed thin films of four symmetric semicrystalline block copolymers on mica was investigated by tapping mode atomic force microscopy (AFM) and grazing incidence X-ray diffraction (XRD). It is found that the morphology of the thin films is dependent on chain length of oxyethylene/oxybutylene block copolymers. The as-cast thin films of the shorter EmBn block copolymers on mica exhibit a multi-layered lamellar structure parallel to the surface, in which the stems of the E crystals in the first half polymer layer contacting mica are parallel to the mica surface and perpendicular to the mica surface in the upper polymer layers. In contrast, the as-cast thin film of longer E224B114 exhibits a structure with mixed orientations of lamellar microdomains on a half polymer layer parallel to the surface. After annealing, the multi-layered structure on mica is transformed into a half-layered, densely branched structure, which is formed following a diffusion-limited aggregation mechanism, opposed to the featureless half-layered structure on silicon. Upon annealing, the upper polymer layers gradually retreat and the remaining area becomes thicker, but in contrast the first half polymer layer contacting mica becomes thinner due to wetting and the parallel orientation of the E crystal stems. The densely branched structure and the different chain orientations of the E crystal stems in the first half polymer layer contacting mica are attributed to the strong interaction between the E block and mica, as revealed by our previous work. The width of branches was employed to analyze the kinetics of secondary crystallization. It is also found that the width of the branches and the velocity of crystal front decrease as the chain length increases.  相似文献   

8.
A poly(ethylene oxide) diblock copolymer containing a short block of poly{2,5-bis[(4-methoxyphenyl)oxycarbonyl]styrene} (PEO-b-PMPCS) has been successfully synthesized via atom transfer radical polymerization (ATRP) method. The number average molecular weights (Mn) of the PEO and PMPCS blocks are 5300 and 2100 g/mol, respectively. Combining the techniques of differential scanning calorimetry (DSC), optical microscopy (OM), wide angle X-ray diffraction (WAXD), and small angle X-ray scattering (SAXS), we have found that the PMPCS blocks, which are tablet-like, can significantly affect the crystallization and melting of the diblock copolymer. The sample studied can form the crystals with a monoclinic crystal structure identical to that of the homo-PEO. The melting temperature (Tm) of the diblock copolymer increases monotonically with crystallization temperature (Tc), which is remarkably similar to the behavior of long period. On the basis of Gibbs-Thomson relationship, the equilibrium Tm of the diblock copolymer is estimated to be 65.4 °C. In a wide undercooling (ΔT) range (14 °C<ΔT<30 °C), the isothermal crystallization leads to square-shaped crystals. The PEO-b-PMPCS crystallization exhibits a regime I→II transition at ΔT of 19 °C. The PEO blocks are non-integral folded (NIF) in the crystals, and the PMPCS blocks rejected to lamellar fold surfaces prevent the NIF PEO crystals from transforming to integral folded (IF) ones. Furthermore, the PMPCS tablets may adjust their neighboring positions up or down with respect to the lamellar surface normal, forming more than one PMPCS layer to accompany the increase in the PEO fold length with increasing Tc.  相似文献   

9.
Crystallization of two oxyethylene/oxybutylene block copolymers (E76B38 and E155B76) from micelles in block copolymer/amorphous homopolymer blends was studied by differential scanning calorimetry (DSC) and time-resolved small angle X-ray scattering (SAXS). Unlike the simultaneous crystallization and formation of superstructure in crystallization from an ordered structure, crystallization of block copolymer from micelles can be divided into two steps. The core of the micelles firstly crystallizes individually, with first-order crystallization kinetics and homogeneous nucleation mechanism. The SAXS revealed that crystallization-induced deformation occurs for the micelles, which strongly depends on microstructure of the block copolymers. For the shorter block copolymer E76B38, larger deformation induced by crystallization was observed, leading to coalescence of the micelles after crystallization, while for the longer block copolymer E155B76 the micelles show little deformation and the morphology of micelle is retained after crystallization.  相似文献   

10.
Weihui Xie 《Polymer》2007,48(23):6791-6798
Amphiphilic biodegradable mPEG-PCL diblock copolymers have been synthesized using rare earth catalyst: yttrium tris(2,6-di-tert-butyl-4-methylphenolate) [Y(DBMP)3] in the presence of monomethoxy poly(ethylene glycol) (mPEG, Mn = 5000) as macro-initiator. The diblock architecture of the copolymers was thoroughly characterized by 1H NMR, 13C NMR and SEC. The molecular weights of mPEG-PCLs can be well controlled by adjusting the feeding molar ratio of ?-CL to mPEG. Thermal and crystallization behaviors of the diblock copolymers were investigated by DSC and POM (polarized optical microscope). The crystallization property of mPEG-PCL block copolymers depends on the length of PCL blocks. As the molecular weight of PCL block increased, the crystallization ability of mPEG block was visibly restrained. Aqueous micelles were prepared by dialysis method. The critical micelle concentration of the copolymers, which was determined to be 0.9-6.9 mg/L by fluorescence technique, increased with the decreasing of PCL block length. The particle sizes determined by DLS were 30-80 nm increasing with the PCL block length. TEM images showed that these micelles were regularly spherical in shape.  相似文献   

11.
Ring opening metathesis polymerization (ROMP) with Grubbs's catalyst was used to synthesize narrow polydispersity (PDI)diblock copolymers of norbornene (NOR) and norbornenedicarboxylic acid (NORCOOH). Norbornene (NOR) and 5-norbornene-2,3,-dicarboxylic acid bis trimethylsilyl ester (NORCOOTMS) were used as precursor monomers for thepolymerization. [NORCOOTMS]m/[NOR]n was converted to [NORCOOH]m/[NOR]n by precipitating the polymer solution in a mixture of methanol, acetic acid, and water. The conversion to 5-norbornene-2,3-dicarboxylic acid was evidenced by 1H NMR. By polymerizing the bulkier NORCOOTMS precursor monomer first, lower PDIs were observed for the completed [NORCOOH]m/[NOR]n block copolymers in comparison to copolymers where the NOR block was polymerized first. The PDI of the diblock copolymers of [NORCOOH]m/[NOR]n decreased with increase in block length ofthe precursor NORCOOTMS monomer. This study shows that the PDI can be controlled by selecting a monomer with appropriate functionality as the starting block of the block copolymer to control the rate of propagation, Rp, as an alternative of using additives to change the reactivity of the catalyst.  相似文献   

12.
We investigated, via small angle X-ray scattering (SAXS), the ordered-to-disordered transition temperature (TODT) of symmetric poly(3-dodecylthiophene)-block-poly(methyl methacrylate) copolymers (P3DDT-b-PMMA) with different molecular weights synthesized by anionic coupling reaction. When the molecular weight of P3DDT-b-PMMA was properly chosen, the TODT was observed within experimentally accessible temperature range (higher than the glass transition and melting temperature for PMMA and P3DDT, respectively, but lower than the thermal degradation temperature). We also measured the temperature dependence of Flory–Huggins interaction parameter (χ) between P3DDT and PMMA as χ = 0.1109 + 76.63/T, in which T is the absolute temperature.  相似文献   

13.
In the first part of this article, the method for preparation of heteroarm star (A n B n star-block) copolymers from diblock macromonomers possessing central functional groups is reviewed. These diblock macromonomers formed a microphase-separated structure in the solid state. The central functional groups at the position of the block junction were located regularly at the domain interface. The microgelation of diblock copolymer films formed A n B n star-block copolymers by organization effects. The second section reviews the methods for preparation of (AB) n star-block copolymers from diblock macromonomers possessing a terminal vinylbenzyl group. The microgelation in micelles between diblock macromonomers and linking agent also formed (AB) n star-block copolymers. Finally, the phase stability criteria of these star-block copolymers are reported briefly.  相似文献   

14.
15.
Dongrui Wang 《Polymer》2009,50(2):418-508
In this work, a series of amphiphilic diblock copolymers bearing strong push-pull type azo chromophores was synthesized through post-polymerization azo-coupling reaction scheme. The copolymers (P(CNAZOm-b-MAAn)), composed of 2-(N-ethyl-N-(4-(4′-cyanophenylazo)-phenyl)amino)ethyl methacrylate (CNAZO) and methacrylic acid (MAA) blocks, were obtained through four-step reactions. Firstly, precursor diblock copolymers (P(EMAm-b-tBMAn)) were obtained through sequential two-stage ATRP reactions of 2-(N-ethyl-N-phenylamino)ethyl methacrylate (EMA) and tert-butyl methacrylate (tBMA). Then, 4-amino-4′-cyanoazobenzene chromophores were introduced by azo-coupling reaction of P(EMAm-b-tBMAn) with diazonium salt of 4-aminobenzonitrile. Finally, P(CNAZOm-b-MAAn) was obtained through selective hydrolysis of the tert-butyl ester linkages in the tBMA blocks. Three block copolymers with the same CNAZO block length (m = 100) and different MAA block lengths (n = 5, 13, 23) were prepared by this method. The polymer and copolymers prepared in the process were characterized by GPC, 1H NMR, UV-vis, DSC and TGA measurements. Results show that P(CNAZOm-b-MAAn) forms spherical micellar aggregates by gradually increasing the water content in THF/H2O mixtures. The diameters of the spherical aggregates are related to the composition of the block copolymers and the water-adding rate. The block copolymer with larger molecular weight of the hydrophilic MAA block forms the aggregates with the smaller average size. The increase of the water-adding rate also shows an effect to reduce the diameters. Upon irradiation with a linearly polarized Ar+ laser beam, the spherical aggregates can be elongated in the light polarization direction. The deformation degree shows an almost linear dependence on the light irradiation time in the testing period. The deformed aggregates can recover the original spherical shape after thermal annealing at a temperature above Tg of the block copolymer.  相似文献   

16.
The thermal behavior of poly(butylene-co-2,2-bis[4-(ethylenoxy)-1,4-phenylene]propane terephthalate) copolymers (PBT/BHEEBT) was investigated by thermogravimetric analysis and differential scanning calorimetry. A good thermal stability was found for all the samples. The thermal analysis carried out using DSC technique showed that the Tm of the copolymers decreased with increasing BHEEBT unit content, different from that of Tg, which on the contrary increased. Wide-angle X-ray diffraction measurements permitted to identify the kind of crystalline structure of PBT in all the semi-crystalline samples. The multiple endotherms typical of PBT were also evidenced in the PBT/BHEEBT samples, due to melting and recrystallization processes. By applying the Hoffman-Weeks' method, the Tm° of the copolymers was derived. The isothermal crystallization kinetics was analyzed according to the Avrami's treatment. The introduction of BHEEBT units decreased the PBT crystallization rate. Values of the exponent n close to 3 were obtained, independently of Tc and composition. Furthermore, the presence of a crystal-amorphous interphase was evidenced.  相似文献   

17.
The melting and crystallization behaviours of a polyethylene‐block‐poly(methyl methacrylate) (PE‐b‐PMMA) diblock copolymer and a PE homopolymer were investigated using multiple heating and cooling rate differential scanning calorimetry (DSC) experiments, and modelling of the crystallization kinetics and lamellar thickness distribution. This new model was first validated applying literature and experimental data. The model‐predicted morphology (n = 3.2) closely matched the spherulitic morphology (n = 3), which was determined using polarized optical microscopy. For each experimental cooling rate, the model predicted diblock copolymer crystallinity that well matched the entire DSC crystallinity curve, notably for an Avrami–Erofeev index of n = 2; and apparent crystallization activation energy that hardly varied with the cooling rates used, relative crystallinity (α), and crystallization temperature or time. This disfavours the concept of variable activation energy. The use of the right crystallization model and parameter estimation algorithm is important for addressing the mathematical artefact. Under non‐isothermal cooling, the PE‐b‐PMMA diblock copolymer, as per the model prediction, crystallized without confinement (n ≠ 1), preserving the cylindrical structure. From the characteristic shapes of the crystallization function f(α(T)) versus 1/T and crystallization rate versus α plots, the resulting Tcmax and narrow αmax range can guide the search for an appropriate crystallization model. The overall treatment illustrated in this study is not restricted to a PE homopolymer and a PE‐b‐isotactic PMMA block copolymer. It can be generally applied to crystalline homopolymers and copolymers (alternating, random and block), as well as their blends. The block copolymers and blends can be crystalline–amorphous as well as crystalline–crystalline. © 2014 Society of Chemical Industry  相似文献   

18.
A series of iron oxide doped norbornene (NOR)/deuterated norbornene dicarboxylic acid (NORCOOH) diblock copolymers were synthesized and characterized by X-ray photoelectron spectroscopy (XPS), small angle neutron scattering (SANS) and superconducting quantum interference device (SQUID) experiments. γ-Fe2O3 nanoparticles were synthesized within the microdomains of diblock copolymers with volume fractions of NOR/NORCOOH 0.64/0.36, 0.50/0.50 and 0.40/0.60. A spherical nanoparticle morphology was displayed in the polymer with 0.64/0.36 volume fraction. Polymers with 0.50/0.50 and 0.40/0.60 volume fractions exhibited interconnected metal oxide nanostructures. The observed changes in the shape and peak positions of the small-angle neutron scattering profiles of polymers after metal doping were related to the scattering from the metal oxide particles and to the possible deformed morphologies due to the strong interparticle interactions between metal particles, which may influence the polymer microphase separation. The combined scattering from both polymer domains and magnetic particles was depicted in SANS profiles of metal oxide doped polymers. γ-Fe2O3 containing block copolymers were superparamagnetic at room temperature. An increase in the blocking temperature (Tb) of interconnected nanoparticles was observed and was related to the interparticle interactions, which depends on the average distance (d) between particles and individual particle diameter (2R). The sample with volume fraction of 0.4/0.6 have the lowest d/(2R) ratio and exhibit the highest Tb at 115 K.  相似文献   

19.
The adsorption of poly(ethylene oxide)-b-poly(butylene oxide) diblock copolymers at the solid–liquid interface was studied using a quartz crystal microbalance with dissipation monitoring (QCM-D). The effect of modifying the end group of the hydrophilic block was investigated by comparing the behaviour of trimethylammonium- and dimethylamino-tipped copolymers, designated as TE m B n and DE m B n , respectively. For adsorption from aqueous solution onto a gold surface, results for DE49B22 were similar to those of the T-analogue, but for DE80B34 adsorbed amounts were substantially higher, and for DE27B25 enormously higher, than for the T-analogue. It is suggested that very high levels of adsorption are associated with the formation of a multilayer structure.  相似文献   

20.
Ren-Shen Lee  Chia-Bin Hung 《Polymer》2007,48(9):2605-2612
MPEG-b-PMCL and MPEG-b-PBCL diblock copolymers were synthesized by ring-opening polymerization of 4-methyl-?-caprolactone (MCL) or 4-phenyl-?-caprolactone (BCL) using monomethoxy poly(ethylene glycol) (MPEG, Mn = 550 or 2000 g mol−1) as the macroinitiator and SnOct2 as the catalyst. These copolymers were characterized by differential scanning calorimetry (DSC), 1H NMR, 13C NMR, and gel permeation chromatography. The thermal properties (Tg and Tm) of the diblock copolymers depend on the composition of polymers. When larger amount of MCL or BCL was incorporated into the macromolecular backbone there was an increase in Tg. Their micellar characteristics in the aqueous phase were investigated by fluorescence spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS). The block copolymers formed micelles in the aqueous phase with critical micelle concentrations (CMCs) in the range of 0.5-2.9 mg L−1, depending on the composition of polymers. The lengths of hydrophilic segment influence the shape of micelle. The mean hydrodynamic diameters of micelles from DLS were in the range of 70-140 nm. The drug entrapment efficiency and the drug-loading content of micelles depending on the composition of block polymers were described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号