首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高层建筑走廊机械排烟的数值模拟研究   总被引:2,自引:0,他引:2  
采用场一区复合模型模拟起火层内的烟气运动过程,分析了走廊通道内三种机械排烟方案的烟气控制效果。模拟结果表明,与排烟量相比,排烟口的位置和数量对排烟效果的影响更大;排烟口应尽量远离疏散出口。  相似文献   

2.
排烟口相对于排烟风管的位置对排烟效果有一定影响。通过对地铁换乘车站排烟系统实体试验和火灾数值模拟试验分析,探讨了实际工程中排烟风管排烟口相对位置对排烟效果的影响,并对相关的技术措施与建议进行了归纳总结。  相似文献   

3.
以高层建筑竖井自然排烟为研究对象,利用FDS软件对竖井自然排烟进行模拟,研究外界风对自然排烟的影响.模拟结果表明:当排烟口处于迎风面时,竖井自然排烟受到的影响最大;当竖井顶部四面开启排烟口时,自然排烟受室外风的影响最小.由模拟可见,通过合理设计竖井结构,高层建筑竖井自然排烟是可行的.  相似文献   

4.
双层隧道具有空间利用率高,通行量大等优点,但由于顶部空间有限,多采用侧向排烟的方式控制隧道火灾时烟气的蔓延.以某越江隧道为例,采用火灾动态模拟软件FDS,改变排烟口数量、面积、间距,设计6个火灾场景,定量分析侧向排烟口的设置对机械排烟效果的影响.分析各排烟口流量、流速,分析隧道内温度分布、能见度分布.结果表明:在火源功率20 MW、无纵向风条件下,排烟口面积、排烟口开启数量以及排烟口间距都在火灾发生初期对烟气的蔓延起控制作用;提出在排烟口面积为4 m2、排烟口间距为90 m、火灾时开启4个排烟口时,排烟效果更经济合理.  相似文献   

5.
根据地铁站内火灾烟气的流动特点,以车站中间层发生火灾的情况为研究对象,设置地下二层站台层中部发生火灾时的两种排烟模式,分析地下二层站台层中部的烟气蔓延情况及温度分布,分析中间层的排烟模式对多层地铁车站的烟气控制效果的影响。结果表明:开启起火站台层所有的排烟系统后烟气未向站厅层蔓延,此时站台层顶部的温度明显低于只开启火源处防烟分区排烟系统的情况。  相似文献   

6.
采用数值计算方法,考虑热释放速率、排烟量、排烟口间距、排烟口面积、尺寸比和隧道高度,研究隧道火灾重点排烟系统下烟气蔓延距离、温度分布、排烟口风速和排烟效率。结果表明:火灾烟气蔓延距离随排烟量的增大而缩短,隧道顶棚温度下降;在排烟量不变的条件下,更大的排烟口宽长比能够缩短烟气蔓延距离;而排烟口间距的变化对排烟效率影响不明显。基于研究结果,给出了5 MW和20 MW火源功率下的重点排烟系统排烟量和排烟口布置建议值。  相似文献   

7.
以某大型地铁换乘车站为研究对象,根据车站通风排烟系统的设置情况,将站台火灾排烟模式分为只开启站台排烟风机进行排烟和同时开启站台排烟风机和隧道风机进行排烟2种。选用计算流体力学软件FDS,将火源设置在地下二层站台中部区域,建立地铁车站三维模型,采用大涡模拟方法对站台两种排烟模式的排烟效果进行模拟。对站台内烟气蔓延、能见度和补风风速的分析结果表明:开启车站隧道风机进行辅助排烟可以有效地控制烟气蔓延到站厅,增加了楼扶梯口处的补风风速,达到了更好的防排烟效果。  相似文献   

8.
高层建筑横向走道防排烟方式对烟气控制效果的模拟   总被引:3,自引:0,他引:3  
通过建立高层建筑内烟气流动的数学模型,采用k-ε双方程三维紊流模型对高层建筑火灾时横向走道内防排烟方式以及排烟口的位置和数量的烟气状态进行数值模拟,通过分析比较得出对于火灾初期挡烟垂壁对延缓烟气扩散的效果明显,可以通过设置合理的挡烟垂壁高度和数量来延长疏散时间.重要场所应用机械排烟时,排烟口应避免设在前室附近,对于只有单个排烟口时应将其设置在以挡烟垂肇为防烟分区的中间部位.在保持总排烟量不变时.可以将面积较大的排烟口合理的拆分成几个小的排烟口,并均匀分布在防烟分区内,这样可以降低每个排烟口的控制半径,有效的控制烟气的扩散,延长人员疏散时间.  相似文献   

9.
10.
以某火车站中庭为研究对象,采用FDS模拟软件对火灾烟气控制排放效果进行了模拟。结果表明,该中庭采用自然排烟时的排烟效果明显好于机械排烟。根据这一结论,提出了针对火车站类建筑防排烟设计的一些建议。  相似文献   

11.
针对某办公楼中庭特点,分别采用换气次数法及羽流法对该办公楼中庭部分需要的排烟量进行确定,考虑安全系数1.5,采用换气次数法计算出中庭排烟量为250000m3/h,采用羽流法计算出中庭排烟量为150000m3/h。通过对发生在一层地面的火灾进行数值模拟,分析了两种不同排烟量工况下的烟气控制效果。结果显示,排烟量为250000m3/h时烟气层最终稳定维持在6m,排烟量为150000m3/h时烟气层最终稳定维持在3m,换气次数法计算出的250000m3/h排烟量工况的排烟效果较好。因此,实际中庭建筑工程排烟量的确定应该结合中庭实际情况进行综合分析,并通过模拟实际建筑物场景加以定性研究,以得出最佳设计方案。  相似文献   

12.
通过实体热烟试验,研究地铁上盖车辆基地运用库内的烟气蔓延规律,对比分析不同排烟工况下烟气的扩散速度、烟气温度和烟气层高度,并对机械排烟系统的实际排烟和控烟效果进行现场验证。试验结果表明,运用库内发生火灾后,即使在机械排烟系统的有效作用下,烟气也不能完全被限制在着火区域所在防烟分区内,而是不断向周围扩散蔓延,并在远离火源的区域冷却沉降;提高排烟量,虽可减缓烟气扩散蔓延的速度,但仍无法将烟气全部限制在着火防烟分区内,同时增加排烟系统排烟量对降低烟气温度的效果并不明显。从各工况中烟气层的高度变化情况可知,在设有机械排烟系统的情况下,单位面积排烟量分别为44.8、29.1、16.7 m3/(h.m2)时,烟气层均能被控制在较高的高度(约7 m),可为初期人员疏散和灭火救援提供有利条件。  相似文献   

13.
结合浅埋地铁区间隧道的特点,提出了浅埋地铁区间隧道顶部开孔的自然通风方案。以单洞单线隧道为例,采用FDS对浅埋区间隧道列车火灾时自然通风口的设置间距、尺寸进行模拟分析,根据火灾排烟效果确定自然通风口的设置方案。  相似文献   

14.
周军 《安徽建筑》2014,(4):199-200
采用FDS软件模拟了不同高宽比情况下中庭自然排烟时烟气蔓延和填充过程,并将模拟结果从能见度、温度、烟气层高度等方面进行了定量分析.研究表明,随着中庭高宽比的增加,虽然中庭内烟气温度逐渐降低,但自然排烟效果也随之降低,为保证中庭内的人员安全,应该适当增大自然排烟量,或者使用机械排烟系统.  相似文献   

15.
火灾是地铁系统中危害最大而发生频次最高的事故。由于火灾实验具有一定的破坏性,加之地铁运营、安全等因素的限制,以及技术手段的局限,数值模拟被更多地应用到地铁火灾的预测和防控研究中。本文主要论述地铁火灾数值模拟研究的前沿进展,对现有主要的模拟软件和软件中有待完善的问题进行综述和分析,为地铁火灾数值模拟的研究提供参考。  相似文献   

16.
通过FDS研究隧道横向通风系统中排烟口位置和数量对机械排烟效果的影响,对比烟气蔓延距离,分析和判断各工况的排烟效果.结果表明,打开单个排烟口时,随着排烟口距离火源距离的增加,排烟效果变差;打开多个排烟口时,排烟效果明显好于开启单个排烟口,多个排烟口的位置和数量对排烟效果影响不大.  相似文献   

17.
通过实测及模拟的方法,对地铁站台火灾时,轨顶排热风道和端部专用排烟风管2种协同排烟方案进行了比较研究。研究结果表明:轨顶风道协同排烟方案有效可行,在8A编组车站的研究中侧排烟量占总排烟量的50%以上,屏蔽门漏风量接近20 m3/s,该方案能提供更大的楼梯处向下风速。而专用排烟管协同排烟方案因未开启隧道风机,在楼梯开口面积较大的不利情况下,楼梯处风速存在无法达标的风险,故推荐在车站条件较差时优先采用轨顶风道协同排烟方案。  相似文献   

18.
余沛  袁建平  方正  唐智 《消防科学与技术》2022,41(10):1396-1400
摘 要:利用FDS对某双层盾构公路隧道的侧向重点排烟系统进行了模拟研究,探讨了排烟口面积、间距、排烟口开启方案以及纵向通风对排烟效果的影响。结果表明:在无纵向风的条件下,火灾稳定后排烟口的面积为3~5 m2、排烟口间距为60~100 m时,排烟口的面积和间距对排烟效果的影响很小。随着纵向通风风速的增大和上游排烟口开启数量的增加,隧道侧向排烟系统的排烟效率明显减小。双层隧道上下层排烟口的排烟效率分布规律基本相同,下层隧道的总排烟效率略高一些。本文所研究的双层隧道发生20 MW火灾时,在纵向通风风速2 m/s下,排烟口间距为60 m,排烟口面积为4 m2,上游开启2个排烟口、下游开启4个排烟口时排烟效果更好。  相似文献   

19.
王梁波 《消防科技》2008,27(3):192-194
地下商业建筑必须通过设置机械补风和机械排烟来控制火灾发生时烟气的流动,以达到人员安全疏散的目的。以某一大型地下建筑的一个防火分区为基础.对其在相同的排烟条件下,不同机械补风条件的排烟效果进行了数值模拟分析,指出了要达到良好的排烟效果的条件。  相似文献   

20.
采用FDS模拟对某大型综合体建筑中的环形中庭的机械排烟和竖井自然排烟两种模式进行了对比分析。通过各排烟口烟气参数的定性及定量分析,提出综合排烟效果值来判断该位置采取不同排烟模式的效果优劣。结果表明,距离火源位置较近时,竖井自然排烟效果较好,综合排烟效果值小于1;而远离火源位置时,机械排烟效果较好,综合排烟效果值大于1。可以采用机械排烟与自然排烟相结合的排烟方案,得到最优的排烟效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号