首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
锰锌铁氧体用原材料的工艺与理化性能   总被引:1,自引:0,他引:1  
锰锌铁氧体的主要原材料有氧化铁、四氧化三锰、氧化锌,其理化性能对制成的铁氧体材料具有重要影响。分别概述了锰锌铁氧体使用的主要原材料的生产工艺、理化性能指标及主要生产厂家,最后简要地讨论了各种原材料之间的匹配问题。  相似文献   

2.
用铁砂,制软磁铁氧体的初步研究   总被引:2,自引:0,他引:2  
本文叙述了用铁砂可以代替氧化铁,制备软磁锰锌铁氧体,并已制出MX-1000材料。针对铁砂的特点,对制备工艺进行了初步探索,得出了一些有益的结论.  相似文献   

3.
水热法制备磁性材料粉体的研究进展   总被引:1,自引:0,他引:1  
采用水热法制备的磁性材料粉体具有粒径均匀、团聚少和结晶良好等特点.本文较详细地综述了水热法制备氧化铁、锰锌铁氧体和其他磁性材料料粉的研究进展.  相似文献   

4.
专利集锦     
本发明涉及一种软磁锰锌铁氧体材料及其制备方法,该材料包括主料和微量添加物,所述的主料包括以下组分和摩尔分数:氧化铁51~55%,氧一种软磁锰锌铁氧体材料及其制备方法公开号:CN101996724A公开日:2011.03.30申请人:上海康顺磁性元件厂有限公司  相似文献   

5.
用廉价原材料取代目前通用的中高档原材料,制备开关电源用锰锌功率铁氧体,是一件具有经济技术意义的工作。采用廉价喷雾焙烧氧化铁取代化学法氧化铁,可使原材料降低约1/3。采用廉价电解二氧化锰取代中高档碳酸锰,可使成本降低约1/4。  相似文献   

6.
以不同粒度的粉体为原料,采用粉末冶金技术制备锰锌软磁铁氧体材料,比较了粉体粒度对其组织、力学性能的影响。用振动样品磁强计测量铁氧体的磁性能,结果表明,最适宜制备锰锌软磁铁氧体的粉体原料是纳米级的粉体,它可以显著提高铁氧体的力学性能及磁性能,与微米级粉体制备的锰锌软磁铁氧体相比,其饱和磁化强度明显提高,矫顽力更低。主要原因是纳米级粉体成型性好,克服了微米级粉体成型过程中会出现大量气孔的缺点。  相似文献   

7.
采用传统氧化物陶瓷工艺制备锰锌铁氧体,研究了主配方的氧化铁含量、烧结工艺等因素对材料微观结构和磁导率的影响。结果表明,主配方氧化铁含量在52.2 mol%时,可以获得较好的磁导率温度特性;烧结温度1380℃,保温8~12 h,有助于提高起始磁导率;晶粒直径25μm左右和致密的微观结构,可提高材料的起始磁导率。通过优化配方和制备工艺,开发出了宽温、高磁导率锰锌铁氧体材料RH15K,性能如下:起始磁导率μi:15000±30%(25℃,10 k Hz),μi5000(-40℃,10 k Hz),居里温度TC105℃。  相似文献   

8.
用加压烧结(热压)法已制成适合于记录磁头用的多晶锰锌和镍锌铁氧体。本文描述了加压烧结的一般状况以及设备细节,也讨论了在通常玻璃熔接范围内晶粒尺寸和温度对加压烧结锰锌铁氧体磁性和物理性能的影响。可以看到,在所研究的晶粒尺寸范围内(15~500微米)铁氧体强度随晶粒尺寸减小而增加,而材料耐磨损能力却相反。在500~900℃范围内,回火以除去剩余机械应力可使导磁率增加直到30%。在低温回火时强度有类似增加。然而,温度高过500℃,强度急剧下降,下降量与铁氧体表面光洁度和几何形状有关。通常,在表面光洁度差和增加表面一体积比时强度降低。本文列出材料磨损和硬度与晶粒尺寸和成份关系的数据,还讨论了用加压烧结的锰锌铁氧体作录象器磁头时与用Alfesil和单晶锰锌铁氧体相比性能的改进。  相似文献   

9.
本文主要介绍用碳酸盐作沉淀剂共沉锰锌铁氧体的工艺和生产设备,并对用该工艺生产的铁氧体材料的性能进行了较详细的考察,同时提供了该产品的使用报告。  相似文献   

10.
高磁导率锰锌铁氧体材料的制备   总被引:1,自引:1,他引:1  
本文介绍用共沉法制备高磁导率锰锌铁氧体的工艺过程,并对其烧结方法进行较详细的叙述。此外,还介绍了材料的显微结构、性能及烧结条件三者之间的关系。最后较详细的给出了一种初磁导率达15000的锰锌铁氧体材料的各有关参数,可供使用单位参考,以便恰当地使用这种材料。  相似文献   

11.
采用氧化物陶瓷工艺制备2~4MHz高频开关电源用Mn Zn功率铁氧体,通过对铁氧体断面显微结构、密度和磁性能的测试,研究了TiO_2掺杂量对材料微观结构、磁导率和功率损耗的影响。结果表明,随着TiO_2掺杂量的增加,样品平均晶粒尺寸先减小后增大,磁导率单调减小,不同温度(25℃、100℃)下的磁心总功率损耗(激励条件3MHz,10m T、25m T)先减小后增大。说明TiO_2的适量掺杂可以改善高频Mn Zn功率铁氧体的微观结构,降低其功耗。  相似文献   

12.
采用氧化物陶瓷工艺制备MnZn铁氧体材料,研究了配方中Ni(以NiO的形式)取代Mn对MnZn铁氧体微结构及磁性能的影响。结果表明,配方中Ni取代会造成磁导率下降、损耗增大,但适宜的取代量可以提高MnZn铁氧体材料的高温饱和磁感应强度,当取代量为3.5mol%时,MnZn铁氧体100℃下的饱和磁感应强度可以高达492mT。  相似文献   

13.
Mn-Zn铁氧体掺杂改性研究进展   总被引:1,自引:0,他引:1  
综述了近年来Mn-Zn铁氧体掺杂的研究现状,在讨论掺杂机理、掺杂方法的基础上,重点阐述了掺杂对Mn-Zn铁氧体性能的影响.进入Mn-Zn铁氧体尖晶石晶格的杂质原子将主要影响其磁性能;没有进入Mn-Zn铁氧体尖晶石晶格的杂质原子主要影响其电性能.最后对掺杂Mn-Zn铁氧体的研究趋势进行了展望.  相似文献   

14.
MnZn功率铁氧体高频功耗特性分析   总被引:1,自引:0,他引:1  
采用氧化物陶瓷工艺制备了2~4MHz频段高频开关电源用MnZn功率铁氧体,通过对铁氧体断面显微结构、密度和磁特性的测试,研究了Fe2O3含量对MnZn功率铁氧体功率损耗特性的影响。结果表明,随着Fe2O3含量的增加,晶粒尺寸逐渐减小,常温下3MHz、10mT高频损耗(Pcv)先增大后减小,Fe2O3含量从58mol%增加到59 mol%时,损耗下降非常明显,而在100℃时,铁氧体的剩余损耗逐渐降低,导致总损耗随着Fe2O3含量的增加而减小。随着频率的升高,剩余损耗(Pr)占总损耗的比重逐渐增加,成为损耗的主要部分,而磁滞损耗(Ph)占总损耗的比重逐渐降低,涡流损耗(Pe)所占比重变化不明显。  相似文献   

15.
用普通陶瓷工艺制备了高磁导率MnZn铁氧体材料,研究了MoO3和CaCO3掺杂对材料的磁特性的影响。发现添加MoO3能够促进晶粒长大,从而提高材料的磁导率,但添加过量会增大铁氧体材料的气孔率。添加CaCO3使得晶界明显,晶粒均匀,起始磁导率增高,同时形成了高电阻的晶界层,降低了材料的比损耗因子。  相似文献   

16.
用溶胶-凝胶自蔓延燃烧法制备的低温度系数MnZn铁氧体   总被引:4,自引:0,他引:4  
用溶胶-凝胶自蔓延燃烧法制备软磁锰锌铁氧体,研探了工艺条件对MnZn铁氧体磁导率温度系数及相关磁性能的影响,探讨了提高温度稳定性的途径及掺杂Co^2 对该性能的影响.实验表明,谈方法是制备高性能软磁铁氧体的又一种优良方法.  相似文献   

17.
通过测量MnZn铁氧体的磁性能及Fe2+、Mn3+含量,考察了MnZn铁氧体中的Fe2+含量与配方中Fe2O3、MnO含量的关系及其对MnZn铁氧体磁性能的影响,并探究了MnZn铁氧体的导电机制。结果表明:随着(Fe2O3)a(MnO)b(ZnO)c主组成配方中a值递增(52.55≤a≤53.35)、b值递减(38.33≥b≥37.52),呈现出Fe2+、Mn3+含量均增加的趋势。随着Fe2+含量增加,Pcv谷底温度向低温方向移动,Pcv(min)先减后增,Pcv(20/70/100℃)均先减后增,均在Fe2+含量=1.55%附近达到最小值;起始磁导率μi(20/70/100℃)均先增后减。根据Pcv-Fe2+含量和μi-Fe2+含量两个关系图在Fe2O3=53.15mol%附近出现极值点这一现象,初步推测铁氧体Znα2+Mnβ-x2+Mnx3+Fey2+Feχ-y3+O4+σ(0.1794≥α≥0.1786,0.754≥β≥0.734,0.0031≤x≤0.0040,0.051≤y≤0.070)的导电机制为:y0.064时小极化子间的束缚能主导,y0.064时电子跃迁主导。  相似文献   

18.
铁氧体材料宏观电磁特性取决于材料的成分和微观结构.特定微观结构的获得取决于材料配方、制备工艺及掺杂.对于一定的基本配方,掺杂能够有效地改善材料的微观结构和电磁性能,因此,掺杂改性是铁氧体材料研究的重要内容.文章综合介绍了常见化合物、稀土氧化物和纳米氧化物等微量掺杂物的作用和对Mn-Zn功率铁氧体电磁性能的影响.根据目前的发展现状,指出了Mn-Zn功率铁氧体材料的研究方向.以期对功率铁氧体材料的微量添加研究提供有益的参考.  相似文献   

19.
采用氧化物陶瓷工艺制备MnZn铁氧体材料,研究了烧结过程氧分压及热处理氧分压对于其电磁性能的影响。实验表明,烧结过程中的氧分压P(O_2)越高,材料中的Fe2+含量越低,烧结体晶粒越大;氧分压的最佳范围在4~7%附近,过高或过低均会降低材料的磁性能。对于因氧分压偏离最佳范围导致磁性能低下的MnZn烧结体,可以通过后续的热处理工艺调节Fe2+含量以恢复其磁性能。根据这些结果,综合烧结工艺和热处理工艺的优势,采用21%的氧分压烧结获得较大的晶粒之后再在0.1%的氧分压气氛中热处理的方法调节铁氧体的Fe2+含量,获得了25℃时μi=10600,Bs=427 mT,μi(200 kHz)/μi(10 kHz)=98%,综合性能良好的高磁导率MnZn铁氧体磁芯。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号