首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以充分挖掘材料潜力提高中厚板强度级别为目标,开展了普碳钢中厚板的表层组织超细化和心部组织细晶化控轧控冷工艺研究.在形变相变规律研究及实验室轧制工艺摸索的基础上,制定了现场轧制工艺.在首钢中厚板厂3500 mm轧机上,采用化学成分(质量分数,%)为0.13~0.16 C-0.20~0.25 Si-0.80~0.95 Mn-0.01~0.02 P-0.005~0.010 S的连铸坯,成功轧制出表层超细晶中厚钢板.25 mm厚钢板的表层铁索体晶粒度达到12级,中心铁素体晶粒度达到11级,屈服强度达到350~385MPa,抗拉强度达到470~500 MPa,同时保持25%以上的伸长率,完全满足国标GB/T1591-94中规定的Q345 MPa级钢的力学性能要求.本研究对于企业降低冶炼成本,同时提高中厚板产品强韧性具有重要意义.  相似文献   

2.
2010年山东石横特钢集团有限公司完成了"500 MPa级φ6~φ10mm超细晶粒碳素钢筋开发"、"五切分轧制工艺的研究及工业化应用"、"贝雷桥用8#工字钢开发"、"基于图像处理的棒  相似文献   

3.
400MPa级细晶粒螺纹钢筋的生产开发   总被引:1,自引:0,他引:1  
针对现有工艺设备,以20MnSi坯料为母材,通过调整化学成分,修改精轧孔型设计参数,采用控制轧制和控制冷却工艺,成功地生产铁素体晶粒尺寸在5~10μm的400 MPa级细晶粒钢筋。  相似文献   

4.
微合金钢超细组织的控制轧制   总被引:31,自引:10,他引:21  
探讨了采用应变诱导轧制及应变诱导轧制与常规控轧技术相结合获得超细晶铁素体组织的可行性,研究了冷却速度对应变诱导铁素体晶粒长大的影响,实验结果表明,采用应变诱导轧制可显细化铁素体组织,将应变诱导轧制技术与常规控轧工艺相结合所获得的超细晶组织更为理想。通过实验室模拟轧制,已获得体积分数为97%、晶粒尺寸达0.92μm的超细铁素体组织,TEM分析发现,超细晶铁素体内位错密度较低并有少量小角度晶界存在。  相似文献   

5.
邓奇志 《钢铁》2016,51(12):53-57
 细晶钢筋轧制技术可以充分发挥钢铁材料的性能,减少国家稀缺合金金属的耗用,达到节约资源的目的。抚顺新钢铁有限责任公司以20MnSi钢坯成分为基础,通过化学成分调整,利用公司现有的全连轧生产线工艺装备,采用控轧控冷工艺技术,通过控制变形量、变形温度、变形速度和冷却速度,成功生产出[?16 mm]和[?20 mm]规格的铁素体晶粒度不大于9级的HRB400E细晶粒钢筋。试验结果表明,通过控轧控冷工艺,可以生产出HRB400E级热轧细晶粒钢筋,并确定了工业化生产HRB400E细晶粒钢筋的各项工艺制度。  相似文献   

6.
《冶金设备》2011,(Z1):23-23
日前,山钢集团莱钢棒材厂借助自主研发的超细晶粒钢生产工艺,采用二级钢坯原料成功轧制出符合三级钢标准的螺纹钢筋,经过对产品的周期性检验,钢筋的强度、塑性等指标均符合国家相关标准要求,超细晶粒钢生产工艺实施  相似文献   

7.
表层超细晶粒普碳钢中厚板的工业试制   总被引:3,自引:2,他引:1  
范建文  谢瑞萍  张维旭  王彦锋  阎智平 《钢铁》2006,41(4):40-46,55
以充分挖掘材料潜力提高中厚板质量为目标,开展了普碳钢中厚板表层组织超细化轧制工艺研究.单向压缩热模拟试验结果表明,在适当条件下,化学成分为w(C)0.16%、w(Si)0.19%、w(Mn)0.56%的普碳钢,可发生形变诱导奥氏体-铁素体相变并获得超细晶粒铁素体.实验室轧制9 mm钢板的铁素体晶粒度达到11级(约7μm),与热模拟试验的结果相一致,屈服强度达到350 MPa.在首钢3 500 mm轧机上,采用化学成分为w(C)0.13%~0.16%、w(Si)0.20%~0.25%、w(Mn)0.5%~0.7%、w(P)0.01%~0.02%、w(S)0.005%~0.010%的连铸坯进行工业试制.28 mm厚钢板的表层铁素体晶粒度达到12级,屈服强度达到310~321 MPa,抗拉强度达到440~450 MPa,同时保持34%左右的伸长率.  相似文献   

8.
低碳钢热轧钢筋再结晶控制轧制与控制冷却实现晶粒细化   总被引:6,自引:0,他引:6  
低碳钢低的再结晶温度使得其在钢筋的连续轧制过程中可以通过再结晶控制轧制及控制冷却工艺来实现晶粒细化。试验结果表明,成分为0.18C-0.22Si-0.60Mn的低碳碳素钢在850℃或更低温度以较大的变形量变形时,可以获得10~20μm的奥氏体晶粒尺寸;当加以20℃/s或更高的冷却速度冷却时,可以得到4~6μm或更细小的铁素体晶粒尺寸。晶粒细化使得钢筋的力学性能明显提高。  相似文献   

9.
超细晶粒钢及其力学性能特征   总被引:6,自引:0,他引:6  
董瀚 《中国冶金》2003,(10):26-31,35
探索了在新一代钢中获得超细晶粒的方法。通过低温轧制和应变诱导铁素体相变,可以在碳素结构钢中获得晶粒尺寸小于5μm的超细晶粒,屈服强度大于400MPa。采用应变诱导铁素体相变可以在微合金钢中得到晶粒尺寸为1μm的超细晶粒。低碳微合金钢的屈服强度达到了600MPa,超低碳微合金钢的屈服强度超过了800MPa。采用微合金化和循环热处理可以在合金结构钢中获得2μm的奥氏体晶粒,1500MPa级抗拉强度下改善了耐延迟断裂性能。  相似文献   

10.
1950年代,Hall-Petch提出了晶粒尺寸和屈服强度关系。世界上目前生产的低碳钢,铁素体晶粒度一般为ASTMNo.8~9级,即晶粒尺寸相当于14~20μm,根据Hall-Petch公式,现在大量生产的碳素结构钢,只要把晶粒细化到小于5μm,其强度就可以由200MPa增强到400MPa以上。把低合金钢晶粒细化至2μm左右,强度可增强到800MPa以上。线材超细晶钢的核心技术:利用大变形量细化加热后的粗大奥氏体晶粒;防止大变形量后晶粒再长大,轧制过程中通过快速穿水冷却,防止轧制升温(线材精轧  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号