首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Aminoacyl-tRNA synthetases catalyze aminoacylation of tRNAs by joining an amino acid to its cognate tRNA. The selection of the cognate tRNA is jointly determined by separate structural domains that examine different regions of the tRNA. The cysteine-tRNA synthetase of Escherichia coli has domains that select for tRNAs containing U73, the GCA anticodon, and a specific tertiary structure at the corner of the tRNA L shape. The E. coli enzyme does not efficiently recognize the yeast or human tRNACys, indicating the evolution of determinants for tRNA aminoacylation from E. coli to yeast to human and the coevolution of synthetase domains that interact with these determinants. By successively modifying the yeast and human tRNACys to ones that are efficiently aminoacylated by the E. coli enzyme, we have identified determinants of the tRNA that are important for aminoacylation but that have diverged in the course of evolution. These determinants provide clues to the divergence of synthetase domains. We propose that the domain for selecting U73 is conserved in evolution. In contrast, we propose that the domain for selecting the corner of the tRNA L shape diverged early, after the separation between E. coli and yeast, while that for selecting the GCA-containing anticodon loop diverged late, after the separation between yeast and human.  相似文献   

2.
Structure/function relationships accounting for specific tRNA charging by class II aspartyl-tRNA synthetases from Saccharomyces cerevisiae, Escherichia coli and Thermus thermophilus are reviewed. Effects directly linked to tRNA features are emphasized and aspects about synthetase contribution in expression of tRNA(Asp) identity are also covered. Major identity nucleotides conferring aspartate specificity to yeast, E coli and T thermophilus tRNAs comprise G34, U35, C36, C38 and G73, a set of nucleotides conserved in tRNA(Asp) molecules of other biological origin. Aspartate specificity can be enhanced by negative discrimination preventing, eg mischarging of native yeast tRNA(Asp by yeast arginyl-tRNA synthetase. In the yeast system crystallography shows that identity nucleotides are in contact with identity amino acids located in the catalytic and anticodon binding domains of the synthetase. Specificity of RNA/protein interaction involves a conformational change of the tRNA that optimizes the H-bonding potential of the identity signals on both partners of the complex. Mutation of identity nucleotides leads to decreased aspartylation efficiencies accompanied by a loss of specific H-bonds and an altered adaptation of tRNA on the synthetase. Species-specific characteristics of aspartate systems are the number, location and nature of minor identity signals. These features and the structural variations in aspartate tRNAs and synthetases are correlated with mechanistic differences in the aminoacylation reactions catalyzed by the various aspartyl-tRNA synthetases. The reality of the aspartate identity set is verified by its functional expression in a variety of RNA frameworks. Inversely a number of identities can be expressed within a tRNA(Asp) framework. From this emerged the concept of the RNA structural frameworks underlying expression of identities which is illustrated with data obtained with engineered tRNAs. Efficient aspartylation of minihelices is explained by the primordial role of G73. From this and other considerations it is suggested that aspartate identity appeared early in the history of tRNA aminoacylation systems.  相似文献   

3.
Oligonucleotides that recapitulate the acceptor stems of tRNAs are substrates for aminoacylation by many tRNA synthetases in vitro, even though these substrates are missing the anticodon trinucleotides of the genetic code. In the case of tRNAAla a single acceptor stem G.U base pair at position 3.70 is essential, based on experiments where the wobble pair has been replaced by alternatives such as I.U, G.C, and A.U, among others. These experiments led to the conclusion that the minor-groove free 2-amino group (of guanosine) of the G.U wobble pair is essential for charging. Moreover, alanine-inserting tRNAs (amber suppressors) that replace G. U with mismatches such as G.A and C.A are partially active in vivo and can support growth of an Escherichia coli tRNAAla knockout strain, leading to the hypothesis that a helix irregularity and nucleotide functionalities are important for recognition. Herein we investigate the charging in vitro of oligonucleotide and full-length tRNA substrates that contain mismatches at the position of the G.U pair. Although most of these substrates have undetectable activity, G.A and C.A variants retain some activity, which is, nevertheless, reduced by at least 100-fold. Thus, the in vivo assays are much less sensitive to large changes in aminoacylation kinetic efficiency of 3.70 variants than is the in vitro assay system. Although these functional data do not clarify all of the details, it is now clear that specific atomic groups are substantially more important in determining kinetic efficiency than is a helical distortion. By implication, the activity of mutant tRNAs measured in the in vivo assays appears to be more dependent on factors other than aminoacylation kinetic efficiency.  相似文献   

4.
Identity elements in tRNAs and the intracellular balance of tRNAs allow accurate selection of tRNAs by aminoacyl-tRNA synthetases. The histidyl-tRNA from Escherichia coli is distinguished by a unique G-1.C73 base pair that upon exchange with other nucleotides leads to a marked decrease in the rate of aminoacylation in vitro. G-1.C73 is also a major identity element for histidine acceptance, such that the substitution of C73 brings about mischarging by glycyl-, glutaminyl-, and leucyl-tRNA synthetases. These identity conversions mediated by the G-1.C73 base pair were exploited to isolate secondary site revertants in the histidyl-tRNA synthetase from E. coli which restore histidine identity to a histidyl-tRNA suppressor carrying U73. The revertant substitutions confer a 3-4 fold reduction in the Michaelis constant for tRNAs carrying the amber-suppressing anticodon and map to the C-terminal domain of HisRS and its interface with the catalytic core. These findings demonstrate that the histidine tRNA anticodon plays a significant role in tRNA selection in vivo and that the C-terminal domain of HisRS is in large part responsible for recognizing this trinucleotide. The kinetic parameters determined also show a small degree of anticooperativity (delta delta G = -1.24 kcal/mol) between recognition of the discriminator base and the anticodon, suggesting that the two helical domains of the tRNA are not recognized independently. We propose that these effects substantially account for the ability of small changes in tRNA binding far removed from the site of a major determinant to bring about a complete conversion of tRNA identity.  相似文献   

5.
Interactions of specific amino acid residues of the carboxyl-terminal domain of MetRS with the CAU anticodon of tRNAMet assure accurate and efficient aminoacylation. The substitution of one such residue, Trp461 by Phe, impairs the binding of cognate tRNA, but enhances the binding of noncognate tRNAs, particularly those containing G at the wobble position. However, the enhanced binding of noncognate tRNAs is not accompanied by the increased aminoacylation of these tRNAs. A genetic screening procedure was designed to isolate methionyl-tRNA synthetase mutants which were able to aminoacylate a GGU (threonine) anticodon derivative of tRNAfMet. One such mutant, obtained from W461F MetRS, had an Ile29 to Thr substitution in helix A located in the amino-terminal dinucleotide-fold domain that forms the site for amino acid activation. Analysis of the catalytic properties of the I29T/W461F enzyme indicates that the mutation in helix A of the dinucleotide-fold domain affects kcat for aminoacylation of tRNAs having a GGU threonine anticodon. Interactions with cognate tRNAfMet (CAU), as well as with methionine and ATP were not affected by the Ile29 to Thr substitution. We conclude that the I29T substitution leads to a slight adjustment of the alignment of the CCA stem of noncognate tRNAs (GGU) in the catalytic domain of the enzyme, reflected in the increase in kcat, which also allows mischarging in vivo. A function of Ile29 is therefore to minimize the mischarging of tRNAThr (GGU) by methionyl-tRNA synthetase. The methods described here provide useful tools for examining the mechanisms of tRNA selection by aminoacyl-tRNA synthetases.  相似文献   

6.
An operational RNA code relates amino acids to specific structural features located in tRNA acceptor stems. In contrast to the universal nature of the genetic code, the operational RNA code can vary in evolution due to coadaptations of the contacts between aminoacyl-tRNA synthetases and the acceptor stems of their cognate tRNA substrates. Here we demonstrate that, for class II prolyl-tRNA synthetase (ProRS), functional coadaptations have occurred in going from the bacterial to the human enzyme. Analysis of 20 ProRS sequences that cover all three taxonomic domains (bacteria, eucarya, and archaea) revealed that the sequences are divided into two evolutionarily distant groups. Aminoacylation assays showed that, while anticodon recognition has been maintained through evolution, significant changes in acceptor stem recognition have occurred. Whereas all tRNAPro sequences from bacteria strictly conserve A73 and C1.G72, all available cytoplasmic eukaryotic tRNAPro sequences have a C73 and a G1.C72 base pair. In contrast to the Escherichia coli synthetase, the human enzyme does not use these elements as major recognition determinants, since mutations at these positions have only small effects on cognate synthetase charging. Additionally, E. coli tRNAPro is a poor substrate for human ProRS, and the presence of the human anticodon-D stem biloop domain was necessary and sufficient to confer efficient aminoacylation by human ProRS on a chimeric tRNAPro containing the E. coli acceptor-TpsiC stem-loop domain. Our data suggest that the two ProRS groups may reflect coadaptations needed to accommodate changes in the operational RNA code for proline.  相似文献   

7.
Aminoacyl-tRNA synthetases activate amino acids with ATP to form aminoacyl adenylates as the essential intermediates for aminoacylation of their cognate tRNAs. The class I Escherichia coli cysteine tRNA synthetase contains an N-terminal nucleotide binding fold that provides the catalytic site of adenylate synthesis. The C-terminal domain of the cysteine enzyme is predominantly alpha-helical and contains a leucine heptad repeat motif. We show here that specific substitutions of leucines in the leucine heptad repeats reduced tRNA aminoacylation. In particular, substitution of Leu316 with phenylalanine reduced the catalytic efficiency of aminoacylation by 1000-fold. This deleterious effect was partially alleviated by a more conservative substitution of leucine with valine. Filter binding assays show that neither the phenylalanine nor the valine substitution at Leu316 had a major effect on the ability of the cysteine enzyme to bind tRNA(Cys). In contrast, pyrophosphate exchange assays show that both substitutions decreased the adenylate synthesis activity of the enzyme. Analysis of these results suggests that the primary defect of the valine substitution is executed at adenylate synthesis while that of the phenylalanine substitution is at both adenylate synthesis and the transition state of tRNA aminoacylation. Thus, although Leu316 is located in the C-terminal domain of the cysteine enzyme, it may modulate the capacity of the N-terminal domain for amino acid activation and tRNA aminoacylation through a domain-domain interaction.  相似文献   

8.
9.
The highly specific interaction of each aminoacyl-tRNA synthetase and its substrate tRNAs constitutes an intriguing problem in protein-RNA recognition. All tRNAs have the same overall three-dimensional structure in order to fit interchangeably into the translational apparatus. Thus, the recognition by aminoacyl-tRNA synthetase must be more or less limited to discrimination between bases at specific positions within the tRNA. The hypermodified nucleotide 5-methylaminomethyl-2-thiouridine (mnm5s2U) present at the wobble position of bacterial tRNAs specific for glutamic acid, lysine and possibly glutamine has been shown to be important in the recognition of these tRNAs by their synthetases in vitro. Here, we have determined the aminoacylation level in vivo of tRNAGlu, tRNALys, and tRNA1GIn in Escherichia coli strains containing undermodified derivatives of mnm5s2U34. Lack of the 5-methylaminomethyl group did not reduce charging levels for any of the three tRNAs. Lack of the s2U34 modification caused a 40% reduction in the charging level of tRNAGlu. Charging of tRNALys and tRNA1Gln were less affected. There was no compensating regulation of expression of glutamyl-tRNA synthetase because the relative synthesis rate was the same in the wild-type and mutant strains. These results indicate that the mnm5U34 modification is not an important recognition element in vivo for the glutamyl-tRNA synthetase. In contrast, lack of the s2U34 modification reduced the efficiency of charging by at least 40%. This is the minimal estimate because the turn-over rate of Glu-tRNAGlu was also reduced in the absence of the 2-thio group. Lack of either modification did not affect mischarging or mistranslation.  相似文献   

10.
11.
Proofreading and aminoacylation of tRNAs before export from the nucleus   总被引:1,自引:0,他引:1  
After synthesis and processing in the nucleus, mature transfer RNAs (tRNAs) are exported to the cytoplasm in a Ran.guanosine triphosphate-dependent manner. Export of defective or immature tRNAs is avoided by monitoring both structure and function of tRNAs in the nucleus, and only tRNAs with mature 5' and 3' ends are exported. All tRNAs examined can be aminoacylated in nuclei of Xenopus oocytes, thereby providing a possible mechanism for functional proofreading of newly made tRNAs. Inhibition of aminoacylation of a specific tRNA retards its appearance in the cytoplasm, indicating that nuclear aminoacylation promotes efficient export.  相似文献   

12.
Theaminoacyl tRNAsynthetases (aaRSs)playpivotalrolesinproteinbiosynthesis,whereeachofthe 2 0aaRSsisspecificforoneaminoacidanditscognateisoacceptorsoftRNA .TheinteractionofRE3 withtRNAwasstudiedbythemethodsofnuclearmagneticresonance[1 ,2 ] ,ultraviolet,fluoresce…  相似文献   

13.
A gel shift assay that distinguishes the aminoacylated form from the deacylated form of tRNAs was used to study the requirements for aminoacylation of Escherichia coli tRNA(Asn) in vivo. tRNA(Asn) derivatives containing single base changes in their anticodons or discriminator bases were constructed, and the extent of in vivo aminoacylation was determined directly. Substitution of U35 with C35 or U36 with C36 abolished aminoacylation of the tRNA. Substitution of G34 with C34 converted tRNA(Asn) into a lysine acceptor. Thus, each of the anticodon nucleotides are important for aminoacylation of tRNA(Asn). Substitution of discriminator base G73 with A73 affected the extent of aminoacylation in vivo indicating that the discriminator base also contributes to aminoacylation of tRNA(Asn).  相似文献   

14.
15.
The magnesium dependences of the ATP/PPi exchange and tRNA aminoacylation of reactions were measured for six aminoacyl-tRNA synthetases (isoleucyl-, tyrosyl- and arginyl-tRNA synthetases from class I, and histidyl-, lysyl- and phenylalanyl-tRNA synthetases from class II). The measured values were subjected to best-fit analyses using sum square error calculations between the data and the calculated curves in order to find the mode of participation of the Mg2+ and to optimize the sets of the kinetic constants. The following four dependences were observed: the class II synthetases require three Mg2+ for the activation reaction (including the one in MgATP), but the class I synthetases require only one Mg2+ (in MgATP); in class II synthetases both MgPPi and Mg2PPi participate in the pyrophosphorolysis of the aminoacyl adenylate. Arginyl-tRNA synthetase from class I also shows a better fit if also Mg2PPi reacts, but in the isoleucyl- and tyrosyl-tRNA synthetases only MgPPi but not Mg2PPi is used in the pyrophosphorolysis. Different synthetases have different requirements for the tRNA-bound Mg2+ and spermidine, independent of the enzyme class. 1-4 Mg2+ or spermidines are required in the best fit models. At the end of the reaction in all the synthetases analysed the dissociation of Mg2+ from the product aminoacyl-tRNA essentially enhances the subsequent dissociation of the aminoacyl-tRNA from the enzyme. The binding of ATP to the E. aminoacyl-tRNA complex also speeds up the dissociation of the aminoacyl-tRNA from most of these enzymes.  相似文献   

16.
The accuracy of protein synthesis essentially rests on aminoacyl-tRNA synthetases that ensure the correct attachment of an amino acid to the cognate tRNA molecule. The selection of the amino acid substrate involves a recognition stage generally followed by a proofreading reaction. Therefore, to change the amino acid specificity of a synthetase in the aminoacylation reaction, it is necessary to alleviate the molecular barriers which contribute its editing function. In an attempt to accommodate a noncognate amino acid into the active site of a synthetase, we chose a pair of closely related enzymes. The current hypothesis designates glutaminyl-tRNA synthetase (GlnRS) as a late component of the protein synthesis machinery, emerging in the eukaryotic lineage by duplication of the gene for glutamyl-tRNA synthetase (GluRS). By introducing GluRS-specific features into the Rossmann dinucleotide-binding domain of human GlnRS, we constructed a mutant GlnRS which preferentially aminoacylates tRNA with glutamate instead of glutamine. Our data suggest that not only the transition state for aminoacyl-AMP formation but also the proofreading site of GlnRS are affected by that mutation.  相似文献   

17.
Aminoacyl-tRNAs are key components in protein synthesis. They are formed directly by correct acylation of tRNA (by aminoacyl-tRNA synthetases) or indirectly by tRNA-dependent transformation of misacylated tRNAs. The accuracy of aminoacyl-tRNA synthesis is enhanced by a number of further protein-RNA or protein-protein interactions, some of which are restricted to Archaea, and might reflect adaptation mechanisms to diverse conditions.  相似文献   

18.
We show here that the class I human cytoplasmic isoleucyl-tRNA synthetase is an exceptionally large polypeptide (1266 aa) which, unlike its homologues in lower eukaryotes and prokaryotes, has a third domain of two repeats of an approximately 90-aa sequence appended to its C-terminal end. While extracts of Escherichia coli do not aminoacrylate mammalian tRNA with isoleucine, expression of the cloned human gene in E. coli results in charging of the mammalian tRNA substrate. The appended third domain is dispensable for detection of this aminoacylation activity and may be needed for assembly of a multisynthetase complex in mammalian cells. Alignment of the sequences of the remaining two domains shared by isoleucyl-tRNA synthetases from E. coli to human reveals a much greater selective pressure on the domain needed for tRNA acceptor helix interactions and catalysis than on the domain needed for interactions with the anticodon. This result may have implications for the historical development of an operational RNA code for amino acids.  相似文献   

19.
Nucleotides in tRNAs that are conserved among isoacceptors are typically considered as candidates for tRNA synthetase recognition, with less importance attached to non-conserved nucleotides. Although the anticodon is an important contributor to the identity of methionine tRNAs, the class I methionine tRNA synthetase aminoacylates microhelices with high specificity. The microhelix substrates are comprised of as few as the 1st 4 base pairs of the acceptor stems of the elongator and initiator methionine tRNAs. For these two tRNAs, only the central 2:71 and 3:70 base pairs are common to the 1st 4 acceptor stem base pairs. We show here that, although the flanking 4:69 base pair is not conserved, a particular substitution at this position substantially reduces the gel electrophoresis-detected aminoacylation of an acceptor stem substrate that has the conserved 2:71 and 3:70 base pairs. Although the two methionine tRNAs have either U:A or G:C at position 4:69, substitution with C:G reduces charging of 9- or 4-base pair substrates that recreate part or all of the acceptor stem of a methionine tRNA. This effect is sufficient for methionine tRNA synthetase to discriminate between the closely related methionine and isoleucine tRNA acceptor stems. The ability to distinguish G:C and U:A from C:G is contrary to a simple scheme for recognition of atoms in the RNA minor groove.  相似文献   

20.
Exportin-t (Xpo-t) is a vertebrate nuclear export receptor for tRNAs that binds tRNA cooperatively with GTP-loaded Ran. Xpo-t antibodies are shown to efficiently block tRNA export from Xenopus oocyte nuclei suggesting that it is responsible for at least the majority of tRNA export in these cells. We examine the mechanism by which Xpo-t-RanGTP specifically exports mature tRNAs rather than other forms of nuclear RNA, including tRNA precursors. Chemical and enzymatic footprinting together with phosphate modification interference reveals an extensive interaction between the backbone of the TPsiC and acceptor arms of tRNAPhe and Xpo-t-RanGTP. Analysis of mutant or precursor tRNA forms demonstrates that, aside from these recognition elements, accurate 5' and 3' end-processing of tRNA affects Xpo-t-RanGTP interaction and nuclear export, while aminoacylation is not essential. Intron-containing, end-processed, pre-tRNAs can be bound by Xpo-t-RanGTP and are rapidly exported from the nucleus if Xpo-t is present in excess. These results suggest that at least two mechanisms are involved in discrimination of pre-tRNAs and mature tRNAs prior to nuclear export.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号