首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We design serial concatenated multi-input multi-output systems based on low-density parity-check (LDPC) codes. We employ a receiver structure combining the demapper/detector and the decoder in an iterative fashion. We consider the a posteriori probability (APP) demapper, as well as a suboptimal demapper incorporating interference cancellation with linear filtering. Extrinsic information transfer (EXIT) chart analysis is applied to study the convergence behavior of the proposed schemes. We show that EXIT charts match very well with the simulated decoding trajectories, and they help explain the impact of different mappings and different demappers. It is observed that if the APP demapper transfer characteristics are almost flat, the LDPC codes optimized for binary-input channels are good enough to achieve performance close to the channel capacity. We also present a simple code-optimization method based on EXIT chart analysis, and we design a rate-1/2 LDPC code that achieves very low bit-error rates within 0.15 dB of the capacity of a two-input two-output Rayleigh fading channel with 4-pulse amplitude modulation. We next propose to use a space-time block code as an inner code of our serial concatenated coding scheme. By means of a simple example scheme, using an Alamouti inner code, we demonstrate that the design/optimization of the outer code (e.g., LDPC code) is greatly simplified.  相似文献   

2.
Serial concatenation of LDPC codes and differential modulations   总被引:2,自引:0,他引:2  
In this paper, we consider serially concatenated schemes with outer novel and efficient low-density parity-check (LDPC) codes and inner modulations effective against channel impairments. With a pragmatic approach, we show how to design LDPC codes tailored for simple and robust modulation formats, such as differentially encoded (DE) modulations. The LDPC codes are optimized through the use of a recently proposed analysis technique based on extrinsic information transfer (EXIT) charts. In particular, we optimize, through a "clever" random walk in the parametric space, the degree distributions of the outer LDPC codes, obtaining significant insights on the impact of such distributions on the performance of the proposed concatenated schemes. The optimization is carried out for transmission over both the additive white Gaussian noise channel and a noncoherent channel. The performance predicted by the EXIT chart-based optimization is confirmed by results obtained via computer simulations, considering phase-shift keying and quadrature amplitude modulation at the transmitter side, and iterative demodulation/decoding at the receiver side. The significance of the proposed optimized design of LDPC-coded schemes with DE modulations is validated by the fact that standard nonoptimized LDPC codes perform poorly when used together with inner DE modulations.  相似文献   

3.
This paper proposes a serially concatenated system with an outer convolutional channel encoder and an inner chaos-based coded modulator. With the help of the principles of symbolic dynamics, the chaotic modulation can be described in terms of a trellis. Owing to this, we show that the resulting system can be designed and analyzed following developments made for serially concatenated channel codes (SCCCs) or bit-interleaved coded-modulation systems. We show how the iterative decoding algorithm used in this concatenated framework can be analyzed through the well-known extrinsic information transfer chart device and how the bit error rate can be bounded using the transfer function of the convolutional channel encoder. Comparison with a related SCCC system in both additive white Gaussian noise and frequency-nonselective fading channels shows that this kind of chaos-based systems keeps the potential advantages of coded-modulation-based systems. We are thus confident that the principles shown here can lead to the design of competitive chaotic discrete communication systems.   相似文献   

4.
In this paper, we consider possible solutions for noncoherent decoding of concatenated codes with spectrally efficient modulations. Two main classes of schemes are considered. A first class is obtained by concatenating parallel coding schemes with differential encoding. A second class considers serially concatenated coding structures and possible schemes derived from turbo trellis coded modulation (t-tcm), which do not employ differential encoding. In the first case, at the receiver side we consider separate detection and decoding, while in the second case we consider joint detection and decoding. The major problem connected with such an iterative decoding procedure is that taking into account an augmented channel memory leads to an intolerable trellis size, and hence to an impractical decoding complexity. Reduced-complexity techniques suited to iterative decoding become fundamental, and we consider a recently proposed state-reduction technique. This way, the performance of a coherent receiver is approached, by keeping the number of receiver states fixed.  相似文献   

5.
Extrinsic information transfer functions: model and erasure channel properties   总被引:10,自引:0,他引:10  
Extrinsic information transfer (EXIT) charts are a tool for predicting the convergence behavior of iterative processors for a variety of communication problems. A model is introduced that applies to decoding problems, including the iterative decoding of parallel concatenated (turbo) codes, serially concatenated codes, low-density parity-check (LDPC) codes, and repeat-accumulate (RA) codes. EXIT functions are defined using the model, and several properties of such functions are proved for erasure channels. One property expresses the area under an EXIT function in terms of a conditional entropy. A useful consequence of this result is that the design of capacity-approaching codes reduces to a curve-fitting problem for all the aforementioned codes. A second property relates the EXIT function of a code to its Helleseth-Klove-Levenshtein information functions, and thereby to the support weights of its subcodes. The relation is via a refinement of information functions called split information functions, and via a refinement of support weights called split support weights. Split information functions are used to prove a third property that relates the EXIT function of a linear code to the EXIT function of its dual.  相似文献   

6.
We analyze the convergence of iteratively decoded bit-interleaved coded modulation with imperfect channel state information using the extrinsic information transfer (EXIT) chart. A canonical analysis model is adopted, where the power correlation coefficient between the fading and its estimate becomes the key parameter affecting the extrinsic transfer characteristics of the demapper and hence the convergence of iterative decoding. We further illustrate that decoding convergence can be triggered by tradeoff between the quality of channel estimation and code rate.  相似文献   

7.
Space–time encoders exploiting concatenated coding structures are efficient in attaining the high rates available to large-dimensional multiple-transmitter, multiple-receiver wireless systems under fading conditions, while also providing maximal diversity benefits. We present a multistage iterative decoding structure that takes full advantage of the concatenated nature of the transmission path, treating the modulator and channel stages as an additional encoder in serial concatenation. This iterative decoder architecture allows an encoder employing decoupled coding and modulation to reach the performance of coded modulation systems. It also admits reduced-complexity decoding with a computational load that is nonexponential in the number of antennas or the transmission bit rate, and makes practical decoding for large transmitter arrays possible. The performance curves for these methods follow the shape of the Fano bound, with only a modest power penalty.  相似文献   

8.
The performance of iterative decoding and demodulation of serially concatenated convolutional codes and minimum shift keying (MSK) is studied. It is shown that by appropriately combining the trellises of MSK and the inner code, a high performance coded modulation system can be achieved. Simulation results also confirms that recursive inner codes are essential for a serially concatenated system  相似文献   

9.
In this work, we give good concatenated code ensembles for the binary erasure channel (BEC). In particular, we consider repeat multiple-accumulate (RMA) code ensembles formed by the serial concatenation of a repetition code with multiple accumulators, and the hybrid concatenated code (HCC) ensembles recently introduced by Koller et al. (5th Int. Symp. on Turbo Codes & Rel. Topics, Lausanne, Switzerland) consisting of an outer multiple parallel concatenated code serially concatenated with an inner accumulator. We introduce stopping sets for iterative constituent code oriented decoding using maximum a posteriori erasure correction in the constituent codes. We then analyze the asymptotic stopping set distribution for RMA and HCC ensembles and show that their stopping distance hmin, defined as the size of the smallest nonempty stopping set, asymptotically grows linearly with the block length. Thus, these code ensembles are good for the BEC. It is shown that for RMA code ensembles, contrary to the asymptotic minimum distance dmin, whose growth rate coefficient increases with the number of accumulate codes, the hmin growth rate coefficient diminishes with the number of accumulators. We also consider random puncturing of RMA code ensembles and show that for sufficiently high code rates, the asymptotic hmin does not grow linearly with the block length, contrary to the asymptotic dmin, whose growth rate coefficient approaches the Gilbert-Varshamov bound as the rate increases. Finally, we give iterative decoding thresholds for the different code ensembles to compare the convergence properties.  相似文献   

10.
In this contribution we introduce an EXtrinsic Information Transfer (EXIT) chart matching technique for the design of two serially concatenated irregular codecs, each constituted by a variety of component codes. This approach facilitates a higher degree of design freedom than matching the EXIT function of an irregular codec to that of a regular codec, comprising only a single component code. As a result, a narrower EXIT chart tunnel can be created, facilitating operation at Eb/N0 values that are closer to the channel?s capacity bound. This is demonstrated for a serial concatenation of iteratively decoded Irregular Variable Length Coding (IrVLC) and Irregular Unity Rate Coding (IrURC), which is favourably compared with an IrVLC and regular Unity Rate Coding (URC) based benchmarker. Finally, we show that the iterative decoding complexity of our IrVLCIrURC scheme can be reduced by about 25% upon employing a method of jointly performing EXIT chart matching, while seeking a reduced iterative decoding complexity.  相似文献   

11.
In this paper, we derive closed form upper bounds on the error probability of low-density parity-check (LDPC) coded modulation schemes operating on quasi-static fading channels. The bounds are obtained from the so-called Fano- Gallager?s tight bounding techniques, and can be readily calculated when the distance spectrum of the code is available. In deriving the bounds for multiple-input multiple-output (MIMO) systems, we assume the LDPC code is concatenated with the orthogonal space-time block code as an inner code. We obtain an equivalent single-input single-output (SISO) channel model for this concatenated coded-modulation system. The upper bounds derived here indicate good matches with simulation results of a complete transceiver system over Rayleigh and Rician MIMO fading channels in which the iterative detection and decoding algorithm is employed at the receiver.  相似文献   

12.
张路  匡镜明 《电讯技术》2001,41(4):75-79
针对瑞利信道中存在的严重的多径衰落,本文实现了Turbo-TCM方案与时空分组码的级联系统,以期利用空间分集改善系统的误码率性能。针对级联系统的译码,本文给出了一种具有低译码时延的次优译码算法,该算法的特点是各模块独立译码,先算比特对数似然比再进行二进制Turbo码译码。最后通过计算机仿真给出了使用该次优译码算法的Turbo-TCM方案与时空分组码的级联系统的译码性能。仿真结果说明,当发射天线数目一定时,随着接收天线数目的增加,译码性能的增益随之增加而帧长对译码性能的影响则随之减小。  相似文献   

13.
The system under study is a coded asynchronous DS-CDMA system with orthogonal modulation in time-varying Rayleigh fading multipath channels. Information bits are convolutionally encoded, block interleaved, and mapped to M-ary orthogonal Walsh codes, where the last step is essentially a process of block coding. This paper aims at tackling the problem of joint iterative decoding of this serially concatenated inner block code and outer convolutional code and estimating frequency-selective fading channels in multiuser environments. The (logarithm) maximum a posteriori probability, (Log)-MAP criterion is used to derive the iterative decoding schemes. In our system, the soft output from inner block decoder is used as a priori information for the outer decoder. The soft output from outer convolutional decoder is used for two purposes. First, it may be fed back to the inner decoder as extrinsic information for the systematic bits of the Walsh codeword. Secondly, it is utilized for channel estimation and multiuser detection (MUD). We also show that the inner decoding can be accomplished without extrinsic information, and in some cases, e.g., when the system is heavily loaded, yields better performance than the decoding with unprocessed extrinsic information. This implies the need for correcting the extrinsic information obtained from outer decoder. Different schemes are examined and compared numerically, and it is shown that iterative decoding with properly corrected extrinsic information or with non-extrinsic/extrinsic adaptation enables the system to operate reliably in the presence of severe multiuser interference, especially when the inner decoding is assisted by decision directed channel estimation and interference cancellation techniques.  相似文献   

14.
Multiple serial and parallel concatenated single parity-check codes   总被引:1,自引:0,他引:1  
Single parity-check (SPC) codes are applied in both parallel and serial concatenated structures to produce high-performance coding schemes. The number of concatenations or stages, M, is increased to improve system performance at moderate-to-low bit-error rates without changing the overall code parameters (namely, code rate and code block length). Analytical bounds are presented to estimate the performance at high signal-to-noise ratios. The SPC concatenated codes are considered with binary phase-shift keying and with 16-quadrature amplitude modulation bit-interleaved coded modulation on the additive white Gaussian noise channel and the independent Rayleigh fading channel. Simulations show that the four-stage serial or parallel concatenated SPC codes can, respectively, outperform or perform as well as 16-state turbo codes. Furthermore, decoding complexity is approximately 9-10 times less complex than that of 16-state turbo codes. The convergence behavior of both serial and parallel concatenated SPC codes is also discussed.  相似文献   

15.
We describe the close connection between the now celebrated iterative turbo decoding algorithm of Berrou et al. (1993) and an algorithm that has been well known in the artificial intelligence community for a decade, but which is relatively unknown to information theorists: Pearl's (1982) belief propagation algorithm. We see that if Pearl's algorithm is applied to the “belief network” of a parallel concatenation of two or more codes, the turbo decoding algorithm immediately results. Unfortunately, however, this belief diagram has loops, and Pearl only proved that his algorithm works when there are no loops, so an explanation of the experimental performance of turbo decoding is still lacking. However, we also show that Pearl's algorithm can be used to routinely derive previously known iterative, but suboptimal, decoding algorithms for a number of other error-control systems, including Gallager's (1962) low-density parity-check codes, serially concatenated codes, and product codes. Thus, belief propagation provides a very attractive general methodology for devising low-complexity iterative decoding algorithms for hybrid coded systems  相似文献   

16.
We consider coded modulation schemes for the block-fading channel. In the setting where a codeword spans a finite number N of fading degrees of freedom, we show that coded modulations of rate R bit per complex dimension, over a finite signal set /spl chi//spl sube//spl Copf/ of size 2/sup M/, achieve the optimal rate-diversity tradeoff given by the Singleton bound /spl delta/(N,M,R)=1+/spl lfloor/N(1-R/M)/spl rfloor/, for R/spl isin/(0,M/spl rfloor/. Furthermore, we show also that the popular bit-interleaved coded modulation achieves the same optimal rate-diversity tradeoff. We present a novel coded modulation construction based on blockwise concatenation that systematically yields Singleton-bound achieving turbo-like codes defined over an arbitrary signal set /spl chi//spl sub//spl Copf/. The proposed blockwise concatenation significantly outperforms conventional serial and parallel turbo codes in the block-fading channel. We analyze the ensemble average performance under maximum-likelihood (ML) decoding of the proposed codes by means of upper bounds and tight approximations. We show that, differently from the additive white Gaussian noise (AWGN) and fully interleaved fading cases, belief-propagation iterative decoding performs very close to ML on the block-fading channel for any signal-to-noise ratio (SNR) and even for relatively short block lengths. We also show that, at constant decoding complexity per information bit, the proposed codes perform close to the information outage probability for any block length, while standard block codes (e.g., obtained by trellis termination of convolutional codes) have a gap from outage that increases with the block length: this is a different and more subtle manifestation of the so-called "interleaving gain" of turbo codes.  相似文献   

17.
Mutual information transfer characteristics of soft in/soft out decoders are proposed as a tool to better understand the convergence behavior of iterative decoding schemes. The exchange of extrinsic information is visualized as a decoding trajectory in the extrinsic information transfer chart (EXIT chart). This allows the prediction of turbo cliff position and bit error rate after an arbitrary number of iterations. The influence of code memory, code polynomials as well as different constituent codes on the convergence behavior is studied for parallel concatenated codes. A code search based on the EXIT chart technique has been performed yielding new recursive systematic convolutional constituent codes exhibiting turbo cliffs at lower signal-to-noise ratios than attainable by previously known constituent codes  相似文献   

18.
We apply the standard union bound to turbo-coded modulation systems with maximum-likelihood decoding. To illustrate the methodology, we explicitly derive the bounds for the 2-bits/s/Hz 16 QAM system. Generalization of this bound to other turbo-coded modulation systems is straightforward. As in the case of the standard union bound for turbo codes, we expect these bounds to be useful for rather large values of signal-to-noise ratios, i.e., signal-to-noise ratios for which the code rate is smaller than the corresponding cutoff rate. The bound is based on “uniform interleaving” just as its counterpart for standard turbo coding. The derived bound provides a tool for comparing coded modulation schemes having different component codes, interleaver lengths, mappings, etc., using maximum-likelihood decoding. It is also useful in studying the effectiveness of various suboptimal decoding algorithms. The bounding technique is also applicable to other coded-modulation schemes such as serially concatenated coded modulation  相似文献   

19.
This paper investigates performance of channel coded noncoherent systems over block fading channels. We consider an iterative system where an outer channel code is serially concatenated with an inner modulation code amenable to noncoherent detection. We emphasize that, in order to obtain near-capacity performance, the information rates of modulation codes should be close to the channel capacity. For certain modulation codes, a single-input single-output (SISO) system with only one transmit antenna may outperform a dual-input and single-output (DISO) system with two transmit antennas. This is due to the intrinsic information rate loss of these modulation codes compared to the DISO channel capacity. We also propose a novel noncoherent detector based on Markov Chain Monte Carlo (MCMC). Compared to existing detectors, the MCMC detector achieves comparable or superior performance at reduced complexity. The MCMC detector does not require explicit amplitude or phase estimation of the channel fading coefficient, which makes it an attractive candidate for high rate communication employing quadrature amplitude modulation (QAM) and for multiple antenna channels. At transmission rates of 1 ~ 1.667 bits/sec/Hz, the proposed SISO systems employing 16QAM and MCMC detection perform within 1.6-2.3 dB of the noncoherent channel capacity achieved by optimal input.  相似文献   

20.
Encoding and decoding schemes for concatenated multilevel block codes are presented. By one of these structures, a real coding gain of 5.6-7.4 dB for the bit error range of 10-6 to 10-9 is achieved for transmission through the additive white Gaussian noise channel. Also, a rather large asymptotic coding gain is obtained. The new coding schemes have very low decoding complexity and increased coding gain in comparison with the conventional block and trellis coded modulation structures. A few design rules for concatenated (single and) multilevel block codes with large coding gain are also provided  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号