首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Steady-state creep was studied in hot-forged polycrystalline Al2O3 (3 to 42 μm) of nearly theoretical density doped with≤1 cation % of Fe, Ti, or Cr. Tests were conducted at stresses between 10 and 550 kg/cm2 at 1375° to 1525°C under O2 partial pressures of 0.88 to 10−10 atm. Except in the 10-μm Fe-doped material tested at very small stresses, slightly nonviscous creep behavior was generally observed. The effects of P o2 on the creep rate indicated that increased concentration of a divalent (Fe2+) or quadrivalent (Ti4+) impurity in solid solution enhances the creep rate of polycrystalline Al2O3. The activation energies for the creep of Fe- and Ti-doped Al2O3 samples (148 and 145 kcal/mol, respectively) were significantly higher than that for Cr-doped material (114 kcal/mol). Taking into account the effects of Po2, temperature, and grain size, it was concluded that the steady-state creep of transition-metal-doped Al2O3 is controlled by cation lattice diffusion.  相似文献   

2.
The phase diagram of the system BaO-Fe203 was determined by X-ray diffraction, melting-point measurement, and microscopic methods. Since the reduction of Fe3+ to Fe2+ was observed by chemical analysis in the samples heated at high temperature, especially in molten samples, the samples were heated at 1 atmosphere pressure of oxygen in the temperature region in which the liquid was in equilibrium; 1 atmosphere pressure of oxygen was su5cient to restrain the reduction of Fe3+. In the temperature region of solid-solid equilibrium, the dissociation was not observed even when the samples were heated in air. BaO - 6Fe2O3 formed a solid solution with BaO.Fe203. The BaO:Fe203 ratio of the solid solution was BaO.4.5Fe203 at 1350°C. and BaO. 5.0Fe20a at 800°C. The precipitation micro-structures of each primary solid solution were observed.  相似文献   

3.
Subsolidus phase equilibria in the system Fe2O3–Al2O3–TiO2 were investigated between 1000° and 1300°C. Quenched samples were examined using powder X-ray diffraction and electron probe microanalytical methods. The main features of the phase relations were: (a) the presence of an M3O5 solid solution series between end members Fe2TiO5 and Al2TiO5, (b) a miscibility gap along the Fe2O3–Al2O3 binary, (c) an α-M2O3( ss ) ternary solid-solution region based on mutual solubility between Fe2O3, Al2O3, and TiO2, and (d) an extensive three-phase region characterized by the assemblage M3O5+α-M2O3( ss ) + Cor( ss ). A comparison of results with previously established phase relations for the Fe2O3–Al2O3–TiO2 system shows considerable discrepancy.  相似文献   

4.
The microstructure of ZrO2 fine particles produced by a novel synthesis method at 450° and 950°C has been studied. The fundamentals of the synthesis method, which involves both chemical and diffusion phenomena, are presented. The method is based on mass transport through the gaseous phase between metallic zirconium and Fe2O3 powder. The mass-transporting chemical species are zirconium and iron chlorides. This article focuses on the microstructure and structure of ZrO2 particles formed by the reaction between gaseous ZrCl4 and solid Fe2O3, which is a relevant reaction step that occurs during the synthesis process. The resulting ZrO2 crystals grown on Fe2O3 particles have been analyzed using transmission electron microscopy. Microstructural characterization has been complemented by X-ray diffractometry analysis. Tetragonal-ZrO2 is produced at 450°C and monoclinic-ZrO2 single crystals are produced at 950°C.  相似文献   

5.
The high-temperature creep behavior of sintered polycrystalline SrZrO3 containing 1.35 wt% Fe2O3 was investigated as a function of temperature, stress, grain size, and strain level over the ranges 1160° to 1275°C, 780 to 3110 psi, 0.45 to 2.04 μm, and 0.0014 to 0.014, respectively. A constant-load 4-point (pure bending) method was used to load the specimens. The creep rate is time-dependent, decreasing exponentially with strain, i.e.     , where the decay constant (β=118, measured at the 1560 psi stress level over the strain range 0.0014 to 0.014) is independent of temperature and grain size. No significant grain growth occurred during creep. The activation energy of 169±10 kcal/mol obtained for creep is relatively independent of temperature, stress, grain size, and strain level over the ranges investigated. The creep rate is directly proportional to the cube of the stress and the reciprocal of the grain size; this result is consistent with nonviscous creep theories based on dislocation generation and climb as the rate-controlling deformation mechanism.  相似文献   

6.
Phase relations in the spinel region of the system FeO-Fe2O3-Al2O3 were determined in CO2 at 1300°, 1400°, and 15000°C and for partial oxygen pressures of 4 × 10−7 and 7 × 10−10 atmospheres at 15OO°C. The spinel field extends continuously from Fe3O4-x to FeAl2O4+z.  相似文献   

7.
High-purity polycrystalline MgO and Al2O3 were thermally grooved at 1500° and 1600°C. Accurate techniques were developed for following the growth of a single groove. For high-purity samples growth kinetics were essentially similar to those reported in the literature but were determined to be controlled by volume diffusion. Specimens for thermal grooving were prepared from Al2O3 to which transition metal oxides (Fe2O39, MnO, and TiO2), which are known to accelerate shrinkage and sintering of Al2O3 powder compacts, had been added; the rate of groove growth was increased remarkably by minor amounts of these additives. Control of partial pressure indicated that Fe2+ and Ti4+ are the species active in promoting groove growth. Substantial evidence was found for volume diffusion as the mechanism controlling groove formation.  相似文献   

8.
A study of the solid solution of TiO2, Fe2O3, and Cr203 in mullite was made by measuring the changes in lattice parameters and unit-cell volume. Synthetic mullite (3O3-2SiO2) was reacted with up to 12 weight % of the oxides at temperatures ranging from 1000° to 17000C. The approximate minimum temperature required for the formation of solid solution was 12000C. for Fe203 and 1400°C. for Cr2O3 and TiO3. The maximum amount of solid solution found was 2 to 4% TiO2 at 1600°C., 10 to 12% Fe2Os at 1300°C., and 8 to 10% CrZO3 at 1600OC. Lattice parameters and unit-cell volumes for each solid solution series increased with increasing amounts of foreign oxide. There was good agreement between the calculated and observed increase in cell dimensions for the iron oxide series. Except in the case of titania, there was good agreement between X-ray data and petrographic observations.  相似文献   

9.
Phase relations in air at 1300°C were determined for the system MgO-Cr2O3−Fe2O3 by conventional quenching techniques. Details of the phase equilibria were established for: (1) the sesquioxide solid solution between Cr2O3 and Fe2O3, (2) the spinel solid solution field between MgCr2O4 and MgFe2O4, and (3) the periclase solid solution field for MgO. Selected tie lines connecting coexisting compositions were established with X-ray diffractometer data. Diffuse reflectance spectra, diffractometer intensity ratios, and lattice parameter measurements were obtained for quenched samples to study the structural inversion in the spinel series MgCr2O4-MgFe2O4.  相似文献   

10.
Sintering and microstructural evolution were studied in Fe3O4 as a model system for spinel ferrites. Fe3O4 powder, purified by the salt-crystallization method, was sintered to ∼99.5% density in a CO-CO2 atmosphere. The p O2 Of the sintering atmosphere drastically affects the microstructure (grain size) of sintered Fe3O4 without significantly affecting density. The measured grain-boundary mobilities, M , of Fe3O4 fit the equation M=M 0( T ) p O2−1/2 with M 0( T ) = 2.5×105 exp[-(609kJ·mol-1/ RT ](m/s)(N/m2)−l. The grain-boundary migration process appeared to be pore-drag controlled, with lattice diffusion of oxygen as the most likely rate-limiting step.  相似文献   

11.
Fe3O4–BaTiO3 composite particles were successfully prepared by ultrasonic spray pyrolysis. A mixture of iron(III) nitrate, barium acetate and titanium tetrachloride aqueous solution were atomized into the mist, and the mist was dried and pyrolyzed in N2 (90%) and H2 (10%) atmosphere. Fe3O4–BaTiO3 composite particle was obtained between 900° and 950°C while the coexistence of FeO was detected at 1000°C. Transmission electron microscope observation revealed that the composite particle is consisted of nanocrystalline having primary particle size of 35 nm. Lattice parameter of the Fe3O4–BaTiO3 nanocomposite particle was 0.8404 nm that is larger than that of pure Fe3O4. Coercivity of the nanocomposite particle (390 Oe) was much larger than that of pure Fe3O4 (140 Oe). These results suggest that slight diffusion of Ba into Fe3O4 occurred.  相似文献   

12.
When sintered 95Al2O3-5Fe2O3 (wt%) specimens constituting corundum grains and iron aluminate spinel precipitates were annealed under high oxygen partial pressure (Po2) where only a corundum phase is stable, fast dissolution of particulate spinel precipitates occurred, together with the migration of corundum grain boundaries. Behind the migrating boundaries, a corundum solid solution enriched with Fe2O3 formed. Discontinuous dissolution (DD) of particulate spinel precipitates thus occurred by Po2 increase. In contrast, when 95Al2O3-5Fe2O3 specimens constituting only corundum grains were annealed under low Po2 where both corundum and spinel phases are stable, grain boundaries migrated without spinel precipitation, leaving behind a corundum phase depleted of Fe2O3, similar to chemically induced grain-boundary migration (CIGM) observed during solute depletion. The volatilization of Fe2O3 appeared to cause the boundary migration without precipitation. The observed CIGM and DD would suggest various possibilities of microstructure control in other oxide systems through oxygen partial pressure change.  相似文献   

13.
The effects of stress, temperature, grain size, porosity, and O2 partial pressure on the creep of polycrystalline Fe2O3 were studied in the range 770° to 1105°C by tests in 4-point bending and compression. Deformation rates are controlled by the stress-directed diffusion of either oxygen or iron. Diffusion coefficients computed from the Nabarro-Herring formula modified by including an empirical porosity-correction term are also consistent with the values reported for oxygen and iron.  相似文献   

14.
A study has been made of the binary system Fe2O2-TiO2 by solid-state reactions under dry and hydrothermal conditions. Under dry conditions only one binary compound, pseudobrookite (Fe2O3-TiO2), was formed and no evidence of solid solution on either side of this compound at temperatures up to 1200°C. was obtained. The system under these conditions is a simple binary with a single binary compound. Under hydrothermal conditions of 300° C. and 1200 Ib. per sq. in. the system is apparently also binary, with a single unstable compound closely resembling, if not identical with, the naturally occurring mineral arizonite (ferric metatitanate, Fe2(TiO3)3).  相似文献   

15.
Subsolidus phase relations in the system iron oride-Al2O2-Cr2O3 in air and at 1 atm. O2 pressure have been studied in the. temperature interval 1250° to 1500°C. At temperatures below 1318° C. only sesquioxides with hexagonal corundum structure are present as equilibrium phases. In the temperature interval 1318° to 1410°C. in air and 1318° to 1495° C. at 1 atm. O2, pressure the monoclinic phase Fe2O3. Al2O3 with some Cr2O3 in solid solution is present in the phase assemblage of certain mixtures. At temperatures above 1380°C. in air and above 1445°C. at 1 atm. O2 pressure a complex spinel solid solution is one of the phases present in appropriate composition areas of the system. X-ray data relating d- spacing to composition of solid solution phases are given.  相似文献   

16.
The phase relations in the pseudo-ternary system La2O3–SrO–Fe2O3 have been investigated in air. Isothermal sections at 1100° and 1300°C are presented based on X-ray diffraction and thermal analysis of annealed samples. Extended solid solubility was observed for the compounds Sr n +1− v La v Fe n O3 n +1−δ ( n =1, 2, 3, and ∞) and Sr1− x La x Fe12O19, while only limited solubility of La in Sr4− z La z Fe6O13±δ was observed. At high Fe2O3 content, a liquid with low La2O3 content was stable at 1300°C.  相似文献   

17.
Phase equilibria in the ferrite region of the system FeO–MgO–Fe2O3 have been investigated up to 1300°C. over an oxygen-pressure range of 1.0 to 0.01 atmospheres. The five most important features of the equilibria in this system are as follows: (1) The spinel phase can exist with a deficiency of oxygen in the high-magnesium compositions, (2) Mg++ replaces Fe++ in Fe3O4 beyond the "stoichiometric MgFe2O4," corresponding to the formula (MgO)xMgFe2O4, where x = 0.092 ± 0.004 and is independent of temperature, (3) the spinel field does not include single-phase composition corresponding to Mg-Fe2O4, (4) the lattice constant of spinels in this system depends on cation distribution, and the extent of distribution changes as a function of temperature in turn depends on the magnesium concentration in the spinel, and (5) the spinel field near its terminus has little or no width.  相似文献   

18.
The quenching method has been used to determine approximate phase relations in the system iron oxide-Cr2O3 in air. Only two crystalline phases, a sesquioxide solid solution (Fe2O3–Cr2O3) with corundum structure and a spinel solid solution (approximately FeO ·Fe2O3–FeO – Cr2O3), occur in this system at conditions of temperature and O2 partial pressure (0.21 atm.) used in this investigation. Liquidus temperatures increase rapidly as Cr2O3 is added to iron oxide, from 1591°C. for the pure iron oxide end member to a maximum of approximately 2265°C. for Cr2O3. Spinel(ss) is the primary crystalline phase in iron oxide-rich mixtures and sesquioxide (ss) in Cr2O3–rich mixtures. These two crystalline phases are present together in equilibrium with a liquid and gas (po2= 0.21 atm.) at approximately 2075°C.  相似文献   

19.
A Ce-TZP/platelike La(Co(Fe0.9Al0.1)11)O19 composite was synthesized in situ while sintering from a mixture of Ce-TZP, La(Fe0.9Al0.1)O3, Fe2O3, Al2O3, and CoO powders. Platelike La(Co(Fe0.9Al0.1)11)O19 crystals were grown in a dense Ce-TZP matrix after sintering at temperatures of 1200°–1350°C. The temperature range for sintering Ce-TZP/La(Fe,Al)12O19 composites was expanded widely by substituting Co2+ ions for Fe2+ ions in its structure. The highest value of the bending strength of the Ce-TZP/La(Co(Fe0.9Al0.1)11)O19 composites was 880 MPa, which was higher than that of the Ce-TZP/La(Fe,Al)12O19 composite (780 MPa) and Ce-TZP (513 MPa). The saturation magnetization of the Ce-TZP/La(Co(Fe0.9Al0.1)11)O19 composite was a constant value of 7.7 emu/g after the composite was sintered at 1200°–1350°C.  相似文献   

20.
The Cahn-Fullman method was used to determine three-dimensional grain size distributions from experimentally measured two-dimensional chord distributions in high-purity MgO and magnesiowustite (0.10 and 0.48 wt% Fe2O3). Using the standard deviation of the three-dimensional distributions, the constant which relates average three- and two-dimensional grain sizes was evaluated by the procedure of Mendelson. The characteristics of the grain size distributions were correlated with steady state, abnormal, and terminal grain growth in MgO and magnesiowustite from 1300° to 1500°C. The distribution parameters were particularly useful in characterizing anomalous (i.e. abnormal and terminal) grain growth behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号