首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of the H-2Dd-specific inhibitory receptor Ly49A on murine NK cells is subject to MHC class I-dependent modulation in vivo. As a result, NK cells in H-2Dd-transgenic mice express low cell surface levels of Ly49A, whereas NK cells from nontransgenic C57BL/6 (B6) mice express high levels. The purpose of this study was to assess the role of MHC class I molecules on the NK cell itself vs those on surrounding cells in this calibration and to test whether the Ly49A levels are subject to regulation in mature NK cells also. Analysis of transgenic mice with mosaic expression of an H-2Dd/Ld transgene showed that MHC class I molecules on surrounding cells (external ligands) and on the NK cell itself (internal ligands) played distinct roles in the determination of Ly49A levels. External ligands were involved in down-regulation of Ly49A levels in vivo, whereas internal ligands kept the down-regulated levels of Ly49A low upon NK cell activation in vitro. Furthermore, in an experimental system based on adoptive transfer of spleen cells, receptor down-regulation of Ly49A occurred as a rapid adaptation process in mature NK cells after interaction with the H-2Dd ligand in vivo. This suggests that Ly49 levels are not fixed but can be changed in mature NK cells when they are exposed to a changed MHC class I environment.  相似文献   

2.
Introduction of the MHC class I transgene H-2Dd on C57BL/6 (B6) background conveys NK cell-mediated "missing self" reactivity against transgene-negative cells, and down-regulates expression of the inhibitory receptors Ly49A and Ly49G2 in NK cells. We here present an analysis of transgenic mice expressing chimeric H-2Dd/Ld MHC class I transgenes, and show that the alpha1/alpha2 domains of H-2Dd were necessary and sufficient to induce "missing self" recognition and to down-modulate Ly49A and Ly49G2 receptors. In contrast, transgenes containing the alpha1/alpha2 domains of H-2Ld induced none of these changes, suggesting that not all MHC class I alleles in a host necessarily take part in NK cell education. The lack of effect of the alpha1/alpha2 domains of H-2Ld on NK cell specificity was surprising, considering that both H-2Ld and H-2Dd have been reported to interact with Ly49G2. Therefore, the role of H-2Ld for protection against NK cells expressing Ly49G2 was re-investigated in a transfection system. In contradiction to earlier reports, we show that H-2Dd, but not H-2Ld, abolished killing by sorted Ly49G2+ NK cells, indicating that H-2Ld does not inhibit NK cells via the Ly49G2 receptor.  相似文献   

3.
The expression of certain major histocompatibility complex (MHC) class I ligands on target cells is one important determinate of their susceptibility to lysis by natural killer (NK) cells. NK cells express receptor molecules that bind to MHC class I. Upon binding to their MHC class I ligand, the NK cell is presumed to receive a signal through its receptor that inhibits lysis. It is unclear what role the MHC class I molecules of the effector and target cells play in signaling to the NK cell. We have investigated the role of the cytoplasmic and transmembrane domains of MHC class I molecules by producing a glycosylphosphatidylinositol (GPI)-linked H-2Dd molecule. The GPI-linked H-2Dd molecule is recognized by H-2Dd-specific antibodies and cytotoxic T lymphocytes. Expression of the GPI-linked H-2Dd molecule on H-2b tumor cells resulted in protection of the tumor cells after transplantation into D8 mice (H-2b, H-2Dd) from rejection by NK cells. In addition, NK cells from mice expressing the GPI-linked H-2Dd molecule as a transgene were able to kill nontransgenic H-2b lymphoblast target cells. The GPI-linked MHC class I molecule was able to alter NK cell specificity at the target and effector cell levels. Thus, the expression of the cytoplasmic and transmembrane domains of MHC class I molecules are not necessary for protection and alteration of NK cell specificity.  相似文献   

4.
The Ly-49 gene families are class I-recognizing receptors on murine NK cells. Most Ly-49 receptors inhibit NK cell lysis upon recognizing their target class I ligands. In this report we have examined the ability of Ly-49A and Ly-49G2 to regulate T cell functions on CD3+ cells, primarily the subset that also expresses NK-1.1 and/or DX5. The majority (>50%) of T cells that express Ly-49 molecules also coexpress NK-1.1 and/or DX5, although some NK-1.1- and/or DX5-/CD3+ cells express Ly-49 molecules. Lysis of target cells by IL-2-cultured T cells expressing Ly-49A and G2 was enhanced by Abs specific for Ly-49A and G2 as well as by Abs to class I (H-2Dd alpha1/alpha2). Murine T cells also were cultured in the presence of targets that express (H-2Dd) which is inhibiting for the Ly-49A and G2 receptors. These cells were examined for a coincident increase in cytokine production (IFN-gamma, TNF-alpha, and granulocyte-macrophage CSF). Abs to Ly-49A and G2 or their respective class I ligands blocked the negative signals mediated via the Ly-49 receptors and increased IFN-gamma and granulocyte-macrophage CSF production after interaction of these T cells with H-2Dd-expressing tumor targets. Furthermore, an EL-4 T cell line expressing both Ly-49A and G2, when treated with mAb YE148 and 4D11, demonstrated reduced cytokine production and calcium mobilization. These results demonstrate for the first time that Ly-49 class I binding receptors, previously thought to be restricted to mouse NK cells, can mediate important physiological functions of T cell subsets.  相似文献   

5.
Radioresistant host elements mediate positive selection of developing thymocytes, whereas bone marrow-derived cells induce clonal deletion of T cells with receptors that are strongly autoreactive. In contrast to T cell development, little is known about the elements governing the natural killer (NK) cell repertoire, which, similar to the T cell repertoire, differs between individuals bearing different major histocompatibility complex (MHC) phenotypes. We have used murine bone marrow transplantation models to analyze the influence of donor and host MHC on an NK cell subset. We examined the expression of Ly-49, which is strongly expressed on a subpopulation of NK cells of H-2b mice, but not by NK cells of H-2a mice, probably because of a negative effect induced by the interaction of Ly-49 with Dd. To evaluate the effect of hematopoietic cell H-2a expression on Ly-49 expression of H-2b NK cells, we prepared mixed allogeneic chimeras by administering T cell-depleted allogeneic (B10.A, H-2a) and host-type (B10, H-2b) marrow to lethally irradiated B10 mice, or by administering B10. A marrow to B10 recipients conditioned by a nonmyeloablative regimen. Expression of H-2a on bone marrow-derived cells was sufficient to downregulate Ly-49 expression on both H-2a and H-2b NK cells. This downregulation was thymus independent. To examine the effect of H-2a expressed only on radioresistant host elements, we prepared fully allogeneic chimeras by administering B10 bone marrow to lethally irradiated B10.A recipients. B10 NK cells of these fully allogeneic chimeras also showed downregulation of Ly-49 expression. The lower level of H-2a expressed on H-2b x H-2a F1 cells induced more marked downregulation of Ly-49 expression on B10 NK cells when presented on donor marrow in mixed chimeras than when expressed only on radioresistant host cells. Our studies show that differentiation of NK cells is determined by interactions with MHC molecules expressed on bone marrow-derived cells and, to a lesser extent, by MHC antigens expressed on radioresistant host elements.  相似文献   

6.
Mice lacking beta2-microglobulin (beta2m- mice) express greatly reduced levels of MHC class I molecules, and cells from beta2m- mice are therefore highly sensitive to NK cells. However, NK cells from beta2m- mice fail to kill beta2m- normal cells, showing that they are self tolerant. In a first attempt to understand better the basis of this tolerance, we have analyzed more extensively the target cell specificity of beta2m- NK cells. In a comparison between several MHC class I-deficient and positive target cell pairs for sensitivity to beta2m- NK cells, we made the following observations: First, beta2m- NK cells displayed a close to normal ability to kill a panel of MHC class I-deficient tumor cells, despite their nonresponsiveness to beta2m- concanavalin A (Con A)-activated T cell blasts. Secondly, beta2m- NK cells were highly sensitive to MHC class I-mediated inhibition, in fact more so than beta2m+ NK cells. Thirdly beta2m- NK cells were not only tolerant to beta2m- Con A blasts but also to Con A blasts from H-2Kb-/Db- double deficient mice in vitro. We conclude that NK cell tolerance against MHC class I-deficient targets is restricted to nontransformed cells and independent of target cell expression of MHC class I free heavy chains. The enhanced ability of beta2m- NK cells to distinguish between MHC class I-negative and -positive target cells may be explained by increased expression of Ly49 receptors, as described previously. However, the mechanisms for enhanced inhibition by MHC class I molecules appear to be unrelated to self tolerance in beta2m- mice, which may instead operate through mechanisms involving triggering pathways.  相似文献   

7.
Two families of major histocompatibility complex (MHC) class I-specific receptors are found on natural killer (NK) cells: immunoglobulin-like receptors and C-type lectin receptors. In mice, the latter category is represented by the Ly49 family of receptors, whereas in humans, NK cells express the distantly related CD94, which forms MHC class I-specific heterodimers with NKG2 family members. Humans also express the MHC class I-specific p50/p58/p70 family of immunoglobulin-like receptors, but these have not been identified in mice. Hence, there is no known instance of an MHC class I-specific receptor that is expressed by both human and murine NK cells. Here we report the cloning of CD94 from the CB.17 and C57BL/6 strains of mice. Mouse CD94 is 54% identical and 66% similar to human CD94, and is also a member of the C-type lectin superfamily. Mouse CD94 is expressed efficiently on the cell surface of cells transiently transfected with the corresponding cDNA, but surface CD94 was unable to mediate detectable binding to MHC class I-expressing ConA blasts. Notably, mouse CD94, like human CD94, has a very short cytoplasmic tail, suggesting the existence of partner chains that may play a role in ligand binding and signaling. Like many other C-type lectins expressed by NK cells, mouse CD94 maps to the NK complex on distal chromosome 6, synteneic to human CD94. We also demonstrate that mouse CD94 is highly expressed specifically by mouse NK cells, raising the possibility that mice, like humans, express multiple families of MHC class I-specific receptors on their NK cells. Murine homologs of human NKG2 family members have not yet been identified, but we report here the existence of a murine NKG2D-like sequence that also maps to the murine NK complex near CD94 and Ly49 family members.  相似文献   

8.
Clonally distributed inhibitory receptors negatively regulate natural killer (NK) cell function via specific interactions with allelic forms of major histocompatibility complex (MHC) class I molecules. In the mouse, the Ly-49 family of inhibitory receptors is found not only on NK cells but also on a minor (NK1.1+) T cell subset. Using Ly-49 transgenic mice, we show here that the development of NK1.1+ T cells, in contrast to NK or conventional T cells, is impaired when their Ly-49 receptors engage self-MHC class I molecules. Impaired NK1.1+ T cell development in transgenic mice is associated with a failure to select the appropriate CD1-reactive T cell receptor repertoire. In normal mice, NK1.1+ T cell maturation is accompanied by extinction of Ly-49 receptor expression. Collectively, our data imply that developmentally regulated extinction of inhibitory MHC-specific receptors is required for normal NK1.1+ T cell maturation and selection.  相似文献   

9.
Although activation of natural killer (NK) cytotoxicity is generally inhibited by target major histocompatibility complex (MHC) class I expression, subtle features of NK allorecognition suggest that NK cells possess receptors that are activated by target MHC I. The mouse Ly-49D receptor has been shown to activate NK cytotoxicity, although recognition of MHC class I has not been demonstrated previously. To define Ly-49D-ligand interactions, we transfected the mouse Ly-49D receptor into the rat NK line, RNK-16 (RNK.mLy-49D). As expected, anti- Ly-49D monoclonal antibody 12A8 specifically stimulated redirected lysis of the Fc receptor- bearing rat target YB2/0 by RNK.mLy-49D transfectants. RNK.mLy-49D effectors were tested against YB2/0 targets transfected with the mouse MHC I alleles H-2Dd, Db, Kk, or Kb. RNK.mLy-49D cells lysed YB2/0.Dd targets more efficiently than untransfected YB2/0 or YB2/0 transfected with Db, Kk, or Kb. This augmented lysis of H-2Dd targets was specifically inhibited by F(ab')2 anti-Ly-49D (12A8) and F(ab')2 anti-H-2Dd (34-5-8S). RNK.mLy-49D effectors were also able to specifically lyse Concanavalin A blasts isolated from H-2(d) mice (BALB/c, B10.D2, and DBA/2) but not from H-2(b) or H-2(k) mice. These experiments show that the activating receptor Ly-49D specifically interacts with the MHC I antigen, H-2Dd, demonstrating the existence of alloactivating receptors on murine NK cells.  相似文献   

10.
Cells from mice with mutations in the genes for beta2-microglobulin (beta2m) or for TAP-1 express only low levels of MHC class I proteins on their surfaces, and are thus sensitive to attack by normal NK cells. Although NK cells are present in beta2m- mice and TAP-1(-) mice, they are completely self-tolerant. The underlying mechanism for this tolerance is unknown. It has been proposed that education processes render NK cells from these mice hypersensitive to class I-mediated inhibition, so that they can be inhibited even by the low levels of class I expressed on autologous cells. In this study, we present evidence against this hypothesis, by demonstrating that NK cells from beta2m- mice and TAP-1(-) mice fail to attack beta2m(-)TAP-1(-) double-mutant cells in both in vitro and in vivo assays. The latter cells express substantially lower levels of class I than single-mutant cells, based on serologic tests, as well as a significantly diminished sensitivity to attack by class I-specific CTL. Furthermore, the Ly-49 repertoire on NK cells derived from beta2m(-)TAP-1(-) mice is highly similar to that of either single mutant, indicating that the developmental processes that shape the Ly-49 repertoire cannot respond to the differences in class I levels among these mice. We propose that self-tolerance of NK cells in beta2m- mice and TAP-1(-) mice is likely to result from hyporesponsiveness of the cells to activating signals, or alternatively, to induction of inhibitory signaling through receptors specific for non-class I MHC ligands.  相似文献   

11.
Natural killer (NK) cells preferentially lyse targets that express reduced levels of major histocompatibility complex (MHC) class I proteins. To date, the only known mouse NK receptors for MHC class I belong to the Ly49 family of C-type lectin homodimers. Here, we report the cloning of mouse NKG2A, and demonstrate it forms an additional and distinct class I receptor, a CD94/NKG2A heterodimer. Using soluble tetramers of the nonclassical class I molecule Qa-1(b), we provide direct evidence that CD94/NKG2A recognizes Qa-1(b). We further demonstrate that NK recognition of Qa-1(b) results in the inhibition of target cell lysis. Inhibition appears to depend on the presence of Qdm, a Qa-1(b)-binding peptide derived from the signal sequences of some classical class I molecules. Mouse NKG2A maps adjacent to CD94 in the heart of the NK complex on mouse chromosome six, one of a small cluster of NKG2-like genes. Our findings suggest that mouse NK cells, like their human counterparts, use multiple mechanisms to survey class I expression on target cells.  相似文献   

12.
The murine Ly-49 antigen belongs to a family of type II transmembrane molecules containing lectin-like domains. The original member of this family, Ly-49A, has been demonstrated to be expressed by a subpopulation of natural killer (NK) cells, bind certain class I major histocompatibility complexes (MHC), and act as a negative regulator of lytic activity. The expression patterns and functional activities of the other Ly-49s, however, is unknown. We extended the study of this family by isolating cDNAs encoding two new Ly-49 molecules. The reactivity of these and previously identified Ly-49 molecules with NK antibodies was tested in a COS cell expression system. YE1/32 and YE1/48 bound Ly-49A specifically, and 5E6 reacted only with Ly-49C. Three-color flow cytometric analysis demonstrated Ly-49A and Ly-49C expression defines complex, but distinct subsets within NK1.1+ cells. Some NK1.1-CD3+ as well as NK1.1-CD3- cells expressing Ly-49A or C were also detected. Analysis of MHC congenic strains of mice demonstrated that YE1/32+ and YE1/48+ NK cells are not deleted, as has been shown with the Ly-49A mAb A1. Furthermore, COS cells transfected with Ly-49A bound H-2d and H-2k cell lines, whereas Ly-49C transfectants bound H-2d, H-2k, H-2b, and H-2s. The antibodies 5E6 and 34-1-2S (anti-class I MHC) inhibited the binding of Ly-49C to an H-2s cell line. These results imply that the NK cell antigens Ly-49A and C bind to different repertoires of class I MHC molecules.  相似文献   

13.
Mouse NK lymphocytes express Ly-49 receptors, which inhibit cytotoxicity upon ligation by specific MHC I molecules on targets. Different members of the lectin-like mouse Ly-49 receptor family recognize distinct subsets of murine H-2 molecules, but the molecular basis for the allelic specificity of Ly-49 has not been defined. We analyzed inhibition of natural killing by chimeric MHC I molecules in which the alpha1, alpha2, or alpha3 domains of the Ly-49A-binding allele H-2Dd were exchanged for the corresponding domains of the nonbinding allele H-2Db. Using the Ly-49A-transfected rat NK cell line, RNK-mLy-49A.9, we demonstrated that the H-2Dd alpha2 domain alone accounts for allelic specificity in protection of rat YB2/0 targets in vitro. We also showed that the H-2Dd alpha2 domain is sufficient to account for the allele-specific in vivo protection of H-2b mouse RBL-5 tumors from NK cell-mediated rejection in D8 mice. Thus, in striking contrast to the alpha1 specificity of Ig-like killer inhibitory receptors for human HLA, the lectin-like mouse Ly-49A receptor is predominantly restricted by the H-2Dd alpha2 domain in vitro and in vivo.  相似文献   

14.
The establishment of the human placenta in early pregnancy is characterized by the presence of large numbers of natural killer (NK) cells within the maternal decidua in close proximity to the fetally-derived invading extravillous trophoblast which expresses at least two HLA class I molecules, HLA-G and HLA-C. These NK cells have an unusual phenotype, CD56(bright) CD16, distinguishing them from adult peripheral blood NK cells. They may control key events in trophoblast migration and therefore placentation. Human NK cells in peripheral blood express receptors for polymorphic HLA class I molecules. This family of receptors, known as killer cell inhibitory receptors (KIR), are expressed on overlapping subsets of NK cells to give an NK cell repertoire which differs between individuals. Using a panel of monoclonal antibodies to several members of the KIR family and analysis by flow cytometry, we have found that KIR are expressed by decidual NK cells. There is variation in both the percentage of cells expressing a particular receptor and the density of receptor expression between decidual NK cells from different individuals. Comparison of NK cells from decidua and peripheral blood of the same individual showed that NK cells from these two different locations express different repertoires of KIR. Receptors are present in individuals who do not possess the relevant class I ligand, raising the possibility that these NK receptors may be involved in recognition of the allogeneic fetus by the mother at the implantation site.  相似文献   

15.
The recognition of class I MHC molecules on target cells by the Ly-49 family of receptors regulates NK cytotoxicity. Previous studies have suggested that carbohydrates are involved in the recognition of class I MHC by Ly-49, although their precise role remains unclear. Here, we examined the role of asparagine-linked carbohydrates of the murine class I MHC in the binding to Ly-49A and Ly-49C. We have generated H-2Dd mutants that lack the highly conserved glycosylation sites at amino acid residues 86 in the alpha1 domain and 176 in the alpha2 domain, respectively. These mutant Dd cDNAs were transfected into leukemic cell lines, and the binding of the transfected cells to COS cells expressing Ly-49A or Ly-49C, as well as their susceptibility to lysis by Ly-49A+ NK cells, was examined. Only the mutation of the alpha2 domain glycosylation site significantly reduced the binding of Dd to Ly-49A and Ly-49C. Cells expressing Dd with the mutation at this site were partially resistant to killing by Ly-49A+ NK cells. These results suggest that, while carbohydrates linked to residue 176 seem to function as a part of the ligand structure for the Ly-49 family of NK receptors, there are additional structural features involved in this recognition. This glycosylation site is highly conserved among murine class I MHC but is not found among those of other species, suggesting that its role is unique to the murine immune system. It further suggests that murine class I MHC and Ly-49 gene families may have evolved in concert.  相似文献   

16.
NK cells obtained by exposing mouse fetal thymocytes to appropriate combinations of IL-4, IL-2, and PMA are phenotypically indistinguishable from cultured adult splenic NK cells with the exception that they generally lack measurable expression of all of the inhibitory Ly49 molecules that can currently be detected with Abs (Ly49A, -C, -G, and -I) and of the activating molecule Ly49D. Despite this deficiency, fetal NK cells have a similar specificity to Ly49-expressing adult splenic NK cells. Individual fetal NK cell clones display an essentially invariant and broad specificity similar to that of polyclonal populations of fetal or adult NK cells, although significant differences in the fine specificity of clones can occasionally be detected. Most remarkably, cloned fetal NK cell lines display heterogeneous expression of a restricted set of surface molecules that includes 10A7, Ly6C, 3C2, CD8, certain isoforms of CD45, and also, occasionally, Ly49 molecules. This heterogeneity is not related to the cell cycle or activation status of the cells, and micromanipulation recloning demonstrates unambiguously that it is not due to a lack of a single cell origin. Diversity is generated rapidly and the capacity for diversification appears to persist indefinitely in vitro. The expression of individual variable Ags is independent and stochastic, resulting in fetal NK "clones" being potentially composed of hundreds of phenotypically distinct cells. We hypothesize that fetal NK cells behave as progenitor cells that are undergoing a process of rapid, extensive, and continuous diversification and that are individually capable of generating and regenerating a complex NK cell repertoire.  相似文献   

17.
Most proteins encoded by members of the Ly-49 gene family are class I-recognizing receptors on murine natural killer (NK) cells. Class I recognition by Ly-49 receptors usually results in inhibition of NK cell lysis of target cells. However, NK cells function not only in a lytic capacity, but also can mediate cytokine production. In this report we have demonstrated the ability of Ly-49A and Ly-49G2 to inhibit production of cytokines by NK cells by showing that specific antibodies against these gene products stimulate cytokine production. Murine NK cells were cultured in the presence of P815 (H2-Dd), and supernatants were analyzed for the production of interferon-gamma (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), and granulocytemacrophage colony-stimulating factor (GM-CSF). NK cell populations were sorted for Ly-49A+ or Ly-49G+ subsets, and these subsets were analyzed for their ability to alter cytokine induction by target cell interaction. In the presence of target cells expressing the appropriate class I molecules, Ly-49A and G2 were found to inhibit cytokine induction by NK cells. Examination of mRNA for IFN-gamma and GM-CSF indicated that Ly-49 receptors increased mRNA levels of NK cells. These results demonstrate that class I binding of these NK receptors can inhibit production of important physiological cytokines, in addition to the regulation of cytotoxic activity.  相似文献   

18.
CD8+ T cells taken directly from mice expressing a Kb-specific T cell receptor (TCR) transgene expressed the transgenic TCR in a bimodal profile as detected by flow cytometric analysis using a clonotype-specific monoclonal antibody. Those cells expressing the lower density of the transgenic TCR expressed the transgenic beta chain and two different alpha chains on their surface. One alpha chain was the product of the alpha transgene, whereas the other was derived by endogenous rearrangement. This report provides the first demonstration that T cells isolated directly from mice may express two different TCR clonotypes on their surface. The potential consequences of this finding for studies using TCR transgenic mice and for the induction of autoimmunity are discussed.  相似文献   

19.
20.
T cell repertoire selection processes involve intracellular signaling events generated through the TCR. The CD4 and CD8 coreceptor molecules can act as positive regulators of TCR signal transduction during these developmental processes. In this report, we have used TCR transgenic mice to determine whether TCR signaling can be modulated by the CD8 coreceptor molecule. These mice express on the majority of their T cells a TCR specific for the male (H-Y) Ag presented by the H-2Db MHC class I molecule. We show that CD4-CD8-, but not CD4-CD8+, thymocytes expressing the H-Y TCR responded with high intracellular calcium fluxes to TCR/CD3 stimulation without extensive receptor cross-linking. To examine the effects of CD8 expression on intracellular signaling responses in the CD4-CD8- cells, the H-Y TCR transgenic mice were mated with transgenic mice that constitutively expressed the CD8 alpha molecule on all T cells. The expression of the CD8 alpha alpha homodimer in the CD4-CD8-thymocytes led to impaired intracellular calcium responses and less efficient protein tyrosine phosphorylation of substrates after TCR engagement. In male H-2b H-Y transgenic mice, the majority of thymocytes have been deleted with the surviving cells expressing a high density of the transgenic TCR and exhibiting either a CD4-CD8- or CD4-CD8lo phenotype. It has been postulated that these cells escaped deletion by down-regulating the CD8 molecule. In the H-Y TCR/CD8 alpha double transgenic male mice, the CD4-CD8lo cells were completely eliminated as a result of CD8 alpha expression. However, the CD4-CD8- T cells were not deleted despite normal levels of the CD8 alpha transgene expression. These results suggest that the CD4-CD8- thymocytes may not be susceptible to the same deletional mechanisms as other thymocytes expressing TCR-alpha beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号