首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 653 毫秒
1.
Mill process changes and source controls instituted in the late 1980s at pulp and paper mills along the British Columbia (BC) coast produced dramatic reductions in both the concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and the TEQ (2,3,7,8-TCDD toxic equivalents). Nevertheless, questions remained as to whether the sediments were acting as contaminant sources or sinks, whether crab uptake pathways have stayed the same since the mills ceased producing PCDD/Fs, and whether improvement was faster at some sites than others. To examine the processes governing the changes in PCDD/F composition, PCDD/F sources and compositional trends for the coastal BC sites were interpreted using sediment and crab PCA (principal components analysis) models and two indices based on the three main groups of PCDD/Fs that covary in all PCA models. One index measured the relative inputs of chlorine bleaching PCDFs and PCP (pentachlorophenol)-related PCDDs at each mill and harbor site whereas the other measured the relative inputs of PCP wood preservatives and pulp mill effluents. Results indicated that PCDFs produced during chlorine bleaching accumulate from sediments to crabs more readily than the PCDDs but that the chlorine bleaching TCDFs have generally decreased in importance at all mill sites. In the years just before 1995, little change was observed in either the proportion of toxic 2,3,7,8-chlorinated congeners or the PCDD/F concentrations, and the improvements seemed to have largely ceased by 1995. The lack of change in PCA composition for the harbors provided a further, disturbing indication that ecosystem recovery may have stalled. Results also implied that the main route of PCDD/Fs into crabs shifted from uptake via a pelagic food web incorporating effluent-borne PCDD/Fs associated with suspended particulate matter to uptake via a benthic food web.  相似文献   

2.
Open landfill dumping areas for municipal wastes in Asian developing countries have recently received particular attention with regard to environmental pollution problems. Because of the uncontrolled burning of solid wastes, elevated contamination by various toxic chemicals including dioxins and related compounds in these dumping sites has been anticipated. In this study, concentrations of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and coplanar polychlorinated biphenyls (PCBs) were determined in soils from dumping sites in the Philippines, Cambodia, India, and Vietnam. Residue concentrations of PCDD/Fs and coplanar PCBs in dumping site soils were apparently greater than those in soils collected in agricultural or urban areas far from dumping sites, suggesting that dumping sites are potential sources of PCDD/Fs and related compounds. Observed PCDD/F concentrations in soils from dumping sites in the Philippines and Cambodia were comparable or higher than those reported for dioxin-contaminated locations in the world (e.g., near the municipal waste incinerators and open landfill dumping sites). Homologue profiles of PCDD/Fs in dumping site soils from the Philippines and, to a lesser extent, from Cambodia and India reflected patterns of samples representing typical emissions, while profiles of agricultural or urban soils were similar to those of typical environmental sinks. This result suggests recent formation of PCDD/Fs in dumping site areas and that open dumping sites are a potential source of dioxins in Asian developing countries. Uncontrolled combustions of solid wastes by waste pickers, generation of methane gas, and low-temperature burning can be major factors for the formation of dioxins in dumping sites. Elevated fluxes of PCDD/Fs to soils in dumping sites were encountered in the Philippines, Cambodia, India, and Vietnam-Hanoi, and these levels were higher than those reported for other countries. Considerable loading rates of PCDD/Fs in the dumping sites of these countries were observed, ranging from 20 to 3900 mg/yr (0.12-35 mg TEQ/yr). PCDD/F concentrations in some soil samples from the Philippines, Cambodia, India, and Vietnam-Hanoi exceeded environmental guideline values, suggesting potential health effects on humans and wildlife living near these dumping sites. The estimated intakes of dioxins via soil ingestion and dermal exposure for children were higher than those for adults, suggesting greater risk of dioxin exposure for children in dumping sites. To our knowledge, this is the first comprehensive study on PCDD/Fs contamination in open dumping sites of Asian developing countries. On the basis of the result of this study, we have addressed a new environmental issue that open dumping sites are potential sources of PCDD/Fs and related compounds, and dioxin contamination in dumping sites may become a key environmental problem in developing countries.  相似文献   

3.
Recent efforts have been made to establish readily measurable surrogate compounds, such as chlorophenols, for polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs), that would enable plant operations to limit formation. Despite the extensive studies conducted on PCDDs/Fs formation from chlorophenols, very few studies have been carried out in real combustion conditions with a realistic concentration of precursors and the presence of water. In the present study, low (10(-9) M), stable concentrations of chlorinated phenols that are representative of concentrations of such compounds in municipal waste incinerator (MWI) raw flue gas were used in experiments investigating the formation of PCDDs/Fs over fly ash. Different mixtures of the chlorophenols (CPs) studied (2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, and 2,3,4,6-tetrachlorophenol) were passed through a bed of oxidized fly ash (carbon-free) and glass beads with and without the presence of water. The chlorophenol reactants used in this study were found to favor PCDD over PCDF formation. The presence of water was observed to considerably reduce the yields of all PCDD/F formed (< 0.3% phenol conversion). The PCDD homologue and isomer distributions were not affected by the presence of water, unlike the PCDF compounds. The major PCDD homologue groups formed were tetra- and penta-, both with or without water in the gas stream. The major PCDF homologue groups were mostly the lower chlorinated ones in the experiments performed in the presence or absence of water. These results contribute to the understanding of PCDD/Fs formation in realistic combustion conditions, including very low concentrations of precursors and the presence of water in the flue gas.  相似文献   

4.
The polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are highly toxic compounds produced by some natural processes and different human activities. Waste incineration as well as steel and iron industries, in particular, the sintering process, are among the principal sources of these pollutants. In this paper, two inhibitors, triethanolamine (TEA) and monoethanolamine (MEA) are tested relating to their abilityto prevent the de novo formation of PCDD/Fs on sinter plant fly ash. The amounts of both PCDDs and PCDFs, formed by thermal treatment of the fly ash, decrease when inhibitors are added. The best results, up to 90% reduction of the PCDD/ Fs formation, are obtained when MEA is mixed with the fly ash at the highest concentration tested (2 wt %). The addition of inhibitors modifies the PCDFs/PCDDs ratios and, under some experimental conditions, the PCDD/Fs homologue distributions, suggesting that more than one pathway for the de novo formation of PCDD/Fs exist. On the other hand, no modification in the PCDD/Fs isomer distributions is observed as a result of the addition of inhibitors, in accordance with the possible thermodynamic control of these distributions. The temperature tested, 325 and 400 degrees C, does not affect the inhibition activity; however, longer reaction times (4 h instead of 2 h) give better percentages of PCDD/Fs reduction. The results suggest that the two inhibitors and especially MEA can reduce the PCDD/Fs formation on sinter plant fly ash under various conditions of temperature and reaction time, making them suitable for use in the real process. Tests performed in parallel at a real sinter plant are in good agreement with the laboratory experiments and confirm that the use of inhibitors is an appropriate technique for the prevention of PCDD/Fs emissions from sintering processes.  相似文献   

5.
This paper presents data on polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in a set of well-characterized, undisturbed surface (0-5 cm) and subsurface background soils from the U.K. and Norway. The soils have been used previously to investigate the latitudinal distribution, fractionation, cold condensation, and "hopping" of other classes of persistent organic pollutants (POPs). The mono- to octa-CDD/F homologues were quantified. Woodland soils contained higher concentrations (on a dry and soil organic matter (SOM)-basis) than grassland soils, consistent with previous studies. The absolute concentrations of all the PCDDs and most of the PCDFs significantly decreased with latitude, generally supporting the idea of a "southern source region" and a "remote/ receiving northern region". There was little evidence of "fractionation" and minimal influence of PCDD/F "hopping" on PCDD/F distribution. The %SOM content had a rather minor influence on soil PCDD/F composition. These findings contrast with the trends seen in these soils for hexachlorobenzene (HCB), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Possible reasons for these differences are discussed and may include influences of/proximity to diffusive combustion sources and/ or sources of variable homologue emissions, formation/ conversion processes for PCDD/Fs in soils, or strong soil-PCDD/F partitioning. These soils, from regionally remote/ background locations in Europe contained between 0.2 and 78 pg sigmaTEQ/g DW. Some therefore exceed recommended levels of contamination for certain land uses by some European countries. These recommendations seem unrealistic and prohibitively restrictive in light of the dataset presented here.  相似文献   

6.
PCDD/Fs were determined in samples of archived surface soils collected from different locations around the world in the early 1880s, in contemporary surface soils from around the world, in archived subsurface soils collected at Rothamsted Experimental Station in the 1870/1880s, and in sections of peat core deposited between 5000 BP and the present. PCDD/Fs were detected in most of the samples. The potential sources and implications of the levels and mixtures of PCDD/Fs present in the samples are discussed. The homologue and isomer patterns observed in most of the contemporary European surface soils are commonly observed for European air samples and soil samples. The homologue pattern in the Rothamsted surface soils collected in the 1800s was similar, suggesting that similar sources of atmospheric emissions of PCDD/ Fs were operating in the UK in the 1800s as currently. Very different patterns, dominated by OCDD and with contributions of HpCDD and HxCDD, were found in some other samples. It is proposed that the PCDD/Fs present in the subsurface Rothamsted soils, archived (1880s) surface soils from Illinois and the Congo, clay beneath the peat bog (deposited approximately 5000 BP), and possibly surface soil samples from Thailand and Australia are of a natural origin. The most abundant TeCDD/F congeners measured in the peat samples here were also those observed by previous workers who studied a Canadian peat bog and are consistent with the microbially mediated oxidative coupling of chlorophenols. The study provides evidence for the widespread occurrence of PCDD/Fs in the environment prior to 1900 and for a complex array of sources (including natural) and environmental transformation processes.  相似文献   

7.
River Kymijoki, the fourth largest river in Finland, has been heavily polluted by pulp mill effluents as well as by chemical industry. Loading has been reduced considerably, although remains of past emissions still exist in river sediments. The sediments are highly contaminated with polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated diphenyl ethers (PCDEs), and mercury originating from production of the chlorophenolic wood preservative (Ky-5) and other sources. The objective of this study was to simulate the transport of these PCDD/F compounds with a one-dimensional flow and transport model and to assess the impact of restoration dredging. Using the estimated trend in PCDD/F loading, downstream concentrations were calculated until 2020. If contaminated sediments are removed by dredging, the temporary increase of PCDD/F concentrations in downstream water and surface sediments will be within acceptable limits. Long-term predictions indicated only a minor decrease in surface sediment concentrations but a major decrease if the most contaminated sediments close to the emission source were removed. A more detailed assessment of the effects is suggested.  相似文献   

8.
Concentrations of polybrominated dibenzo-p-dioxins, and -dibenzofurans (PBDDs/Fs) and polychlorinated dibenzo-p-dioxins, and -dibenzofurans (PCDDs/Fs), were determined in the pre- and post-air pollution control system (APCS) flue gas of a municipal waste combustor (MWC). Operational transients of the combustor were found to considerably increase levels of PBDDs/Fs and PCDDs/Fs compared to steady state operation, both for the raw and clean flue gas; ΣPBDDs/Fs increased from 72.7 to 700 pg dscm(-1) in the raw, pre-APCS gas and from 1.45 to 9.53 pg dscm(-1) in the post-APCS flue gas; ΣPCDDs/Fs increased from 240 to 960 ng dscm(-1) in the pre-APCS flue gas, and from 1.52 to 16.0 ng dscm(-1) in the post-APCS flue gas. The homologue profile of PBDDs/Fs and PCDDs/Fs in the raw flue gas (steady state and transients) was dominated by hexa- and octa-isomers, while the clean flue gas homologue profile was enriched with tetra- and penta-isomers. The efficiency of the APCS for PBDD/F and PCDD/F removal was estimated as 98.5% and 98.7%, respectively. The cumulative TEQ(PCDD/F+PBDD/F) from the stack was dominated by PCDD/F: the TEQ of PBDD/F contributed less than 0.1% to total cumulative toxic equivalency of MWC stack emissions.  相似文献   

9.
Forest fires are suggested as a potential and significant source of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), even though no studies to date provide sufficient evidence to confirm forest fires as a source of PCDD/Fs. Recent investigations in Queensland, Australia have identified a widespread contamination of PCDDs (in particular OCDD) in soils and sediments in the coastal region from an unknown source of PCDD/Fs. Queensland is predominately rural; it has few known anthropogenic sources of PCDD/Fs, whereas forest fires are a frequent occurrence. This study was conducted to assess forest fires as a potential source of the unknown PCDD/F contamination in Queensland. A combustion experiment was designed to assess the overall mass of PCDD/Fs before and after a simulated forest fire. The results from this study did not identify an increase in sigmaPCDD/Fs or OCDD after the combustion process. However, specific non-2,3,7,8 substituted lower chlorinated PCDD/Fs were elevated after the combustion process, suggesting formation from a precursor. The results from this study indicate that forest fires are unlikely to be the source of the unknown PCDD contamination in Queensland, rather they are a key mechanism for the redistribution of PCDD/Fs from existing sources and precursors.  相似文献   

10.
Distribution, characteristics, and global inventory of dioxins (polychlorinated dibenzo-p-dioxins [PCDDs] and dibenzofurans [PCDFs] and dioxin like polychlorinated biphenyls) in kaolin clays collected from 10 countries were investigated. Dioxins were found in all kaolin clay samples analyzed, at total concentrations ranging from 1.2 pg/g (Brazil) to 520,000 pg/g (USA). Dioxin concentrations in kaolin clays from a few countries (e.g., Brazil and UK) were lower than those reported for background soils in Japan. Dioxin profiles in kaolin clays were characterized by the domination of the congener octachlorodibenzo-p-dioxin (OCDD), and the concentrations of other congeners decreased in the order of reduction in the levels of chlorination. Furthermore, specific distribution of congeners, with predominant proportions of 1,4,6,9-substituted PCDDs within each homologue group, was found in most clay samples. The ratios of concentrations of PCDD to PCDF and 1,2,3,7,8,9-HxCDD to 1,2,3,6,7,8-HxCDD indicated differences in the profiles found for anthropogenic sources (including pentachlorophenol) and kaolin clays. Concentrations of PCDD/Fs in kaolin clays, except for American ball clays, did not exceed the environmental criteria set by the Law Concerning Special Measures against Dioxins in Japan. Based on the average concentrations measured in our study, inventories of PCDD/Fs from the production/usage of ball clays on a global scale were estimated to be 650 kg/yr; the corresponding value on a TEQ basis is 2400 g-TEQ/yr. More than 480 kg of OCDD is estimated to be released annually from the production of kaolin clays worldwide, suggesting that kaolin clays can be a major contributor for additional source of dioxins, especially OCDD, in the environment.  相似文献   

11.
The importance of solid- and gas-phase carbon precursors for the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/Fs) during sooting combustion was investigated in an entrained flow reactor (EFR). Experiments were performed at various methane (CH4) flame equivalence ratios with or without gas-phase chlorine (Cl2) and fly ash, to provide a realistic environment for carbon reactions and PCDD/DF formation. Selected experiments were conducted with labeled 13CH4 and 37Cl2 to investigate the relative roles of different carbon and chlorine species for the formation of PCDD/DF. The presence of soot and ash were the two major factors controlling the PCDD/DF yields. The 16 PCDD/DF homologues as well as other analyzed chlorinated aromatics were formed by reaction pathways that varied with degree of chlorination. The mono- and dichlorinated homologues were formed by gas-phase, catalytic, or noncatalytic flame product reactions, occurring during soot formation in the near flame zone and/or at lower reaction temperatures (<650 degrees C) in the postcombustion zone. Meanwhile, the higher (tri- to octa-) chlorinated homologues were mainly formed in the postcombustion zone (<650 degrees C) by fly ash-catalyzed de novo synthesis of the soot. Of these, the PCDD/DFs were formed from high carbon number (>C12) fragments in the solid soot structure, while the PCDDs, at least in part, were also formed by reaction of two C6 fragments. The tri- to hexachlorinated DD/DF homologues were formed via a relatively fast de novo synthesis occurring during the first minutes of reactions on the continuously formed soot particles, whereas de novo synthesis on an aged soot matrix was the major pathway for the hepta- and octachlorinated congeners.  相似文献   

12.
Combustion experiments performed in the presence of hydrogen chloride (HCl) in a laboratory-scale fluidized-bed reactor were carried out to elucidate the role of chlorine in the formation of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs; together: PCDD/Fs) in various sections of a municipal waste incinerator. We first demonstrated that the homologue profile and the pattern of the congener proportions of PCDD/Fs for a model waste containing poly(vinyl chloride) (PVC) combusted in the absence of HCl were similar to those for a PVC-free waste combusted in the presence of HCl. This showed no difference between PVC in the waste and injected HCl in the role as a chlorine source in PCDD/F formation during incineration. Next, to investigate PCDD/F formation in each section of the incinerator, we carried out combustion experiments with the PVC-free waste, injecting HCl at different locations of the incinerator. The amounts of PCDDs and PCDFs formed were significantly reduced when HCI was not supplied to the main combustion section. The presence of HCI in the main combustion section was essential for the formation of PCDD/Fs, even in the downstream sections. This finding indicates that compounds that were able to form PCDD/Fs in the downstream sections were mainly formed in the main combustion section in the presence of HCl.  相似文献   

13.
Fly ash, collected in the electrostatic precipitator of a sinter plant in Belgium, has been examined and characterized in terms of its behavior with respect to thermal polychlorodibenzo-p-dioxins (PCDD) and polychlorodibenzofurans (PCDF) formation. Thermal experiments of the fly ash were conducted in a flow of air. The temperature was varied from 250 to 450 degrees C, and the reaction time varied from 30 min to 6 h. For comparison, the oxidative degradation of carbon in the fly ash was studied by differential scanning calorimetry (DSC) in the temperature range from 50 to 500 degrees C. Besides the known maximum of formation of PCDD/Fs around 325 degrees C generally found on experiments with incinerator fly ash, a second maximum of formation around 400 degrees C is observed on the sinter fly ash used in this study. DSC measurements on the fly ash show that the oxidative degradation of carbon appears at these two different temperatures confirming that the de novo synthesis on this kind of fly ash take place at two different optimum temperatures. About the reaction time, already after 30 min, an important quantity of PCDD/Fs is formed; the fast increase in PCDD/Fs amount is followed by a slower formation rate between 2 and 4 h. At longer reaction time, the formation slows down, and decomposition reactions become important. Analysis of homologue distribution indicates that the profile of PCDD/Fs is independent of the reaction time but that an increase of the temperature leads to a rise of lower chlorinated species. In all experiments, PCDF are formed preferentially (total PCDF/PCDD ratios larger than 5). The PCDF/PCDD ratio is clearly independent of the reaction time. Concerning the temperature, the apparently better stability of PCDF at high temperature (PCDF/PCDD ratio higher at high temperature) results in the fact of different PCDF/PCDD ratios for the different family and modifications of homologue distribution with the temperature. The isomer distribution shows little reaction time or temperature dependency, which is an argument in favor of a thermodynamic control of the isomer distribution during de novo formation of PCDD/Fs. Differences within the isomer distribution patterns of PCDD/Fs obtained from the laboratory de novo synthesis experiments and the original fly ash, reflecting the formation under the industrial process, suggest a different mechanism of formation in the sinter plant for the PCDD and PCDF. The de novo synthesis is sufficient to explain the PCDF formation in the real process, but synthesis from precursors must play a role for the PCDD formation.  相似文献   

14.
The sorption of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) to organic carbon (OC) and black carbon (BC) was measured in two sediment cores taken near the Diamond Alkali superfund site (DA) in the Passaic River and Newark Bay, New Jersey (U.S.A.). An OC partitioning model and a BC-inclusive, Freundlich distribution model were used to interpret measurements of freely dissolved PCDD/Fs using passive samplers in sediment incubations, together with measured sedimentary concentrations of OC, BC, and PCDD/Fs. Samples were also analyzed for polycyclic aromatic hydrocarbons (PAHs) as controls on the two distribution models. The OC partitioning model underpredicted the distribution of PAHs and PCDD/Fs by 10-100-fold. The Freundlich model predicted the distribution of PAHs at the DA to within a factor of 2-3 of observations. Black carbon-water partition coefficients (K(iBC)) for PCDD/Fs, derived from literature results of both field and laboratory studies differed up to 1000-fold from values derived from this study. Contrary to expectations, PCDDs displayed stronger sorption than either PCDFs or PAHs relative to their subcooled liquid aqueous solubilities. Even though the presence of BC in the sediments reduced the overall bioavailability of PCDD/Fs by >90%, the sediments at 2 m depth continue to display the highest pore water activities of PCDD/Fs.  相似文献   

15.
In recent years, studies on environmental samples with unusual dibenzo-p-dioxin (PCDD) congener profiles were reported from a range of countries. These profiles, characterized by a dominance of octachlorinated dibenzodioxin (OCDD) and relatively low in dibenzofuran (PCDF) concentrations, could not be attributed to known sources or formation processes. In the present study, the processes that result in these unusual profiles were assessed using the concentrations and isomer signatures of PCDDs from dated estuarine sediment cores in Queensland, Australia. Increases in relative concentrations of lower chlorinated PCDDs and a relative decrease of OCDD were correlated with time of sediment deposition. Preferred lateral, anaerobic dechlorination of OCDD represents a likely pathway for these changes. In Queensland sediments, these transformations result in a distinct dominance of isomers fully chlorinated in the 1,4,6,9-positions (1,4-patterns), and similar 1,4-patterns were observed in sediments from elsewhere. Consequently, these environmental samples may not reflect the signatures of the original source, and a reevaluation of source inputs was undertaken. Natural formation of PCDDs, which has previously been suggested, is discussed; however, based on the present results and literature comparisons, we propose an alternative scenario. This scenario hypothesizes that an anthropogenic PCDD precursor input (e.g. pentachlorophenol) results in the contamination. These results and hypothesis imply further investigations are warranted into possible anthropogenic sources in areas where natural PCDD formation has been suggested.  相似文献   

16.
This work characterized emission factors of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/Fs) from on-road sampling of three heavy duty diesel vehicles (HDDVs) under experimental conditions of city and highway driving; idling operation; high (>400 ppm) and low (<5 ppm) sulfur (S) fuels; and high mileage and rebuilt engine testing. Emission factors, homologue profiles, and isomer patterns were compared to determine whether the experimental conditions had an impact on PCDD/F emissions, or whether these conditions were uninfluential in determining a fleet-representative emission factor. For a single HDDV tested under conditions of a high mileage engine, a newly rebuilt engine, and the newly rebuilt engine with low S diesel fuel, emission factors were 0.023 (+/- 0.022), 0.008 (+/- 0.002), and 0.016 (+/- 0.013) ng toxic equivalency (TEQ)/km, respectively. These results may infer some limited condition-specific differences in PCDD/F emissions, but these differences do not appear to have a significant effect on the HDDV emission factor. An older HDDV with mechanical fuel controls resulted in a single test value of 0.164 ng TEQ/km, significantly higher than all other results. Observed differences in emission factors, homologue profiles, and TEQ-related isomer patterns from this on-vehicle sampling and others' tunnel sampling suggest limitations in our present characterization of fleet PCDD/F emissions.  相似文献   

17.
This study investigated the impact of copper zeolite selective catalytic reduction (SCR) catalysts and exhaust aftertreatment configurations on the emissions of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) from mobile source diesel engines. Emissions of PCDD/Fs, reported as the weighted sum of 17 congeners called the toxic equivalency quotient (TEQ), were measured using a modified EPA Method 0023A in the absence and presence of exhaust aftertreatment. Engine-out emissions were measured as a reference, while aftertreatment configurations included various combinations of diesel oxidation catalyst (DOC), diesel particulate filter (DPF), Cu-zeolite SCR, Fe-zeolite SCR, ammonia oxidation catalyst (AMOX), and aqueous urea dosing. In addition, different chlorine concentrations were evaluated. Results showed that all aftertreatment configurations reduced PCDD/F emissions in comparison to the engine-out reference, consistent with reduction mechanisms such as thermal decomposition or combined trapping and hydrogenolysis reported in the literature. Similarly low PCDD/F emissions from the DOC-DPF and the DOC-DPF-SCR configurations indicated that PCDD/F reduction primarily occurred in the DOC-DPF with no noticeable contribution from either the Cu- or Fe-zeolite SCR systems. Furthermore, experiments performed with high chlorine concentration provided no evidence that chlorine content has an impact on the catalytic synthesis of PCDD/Fs for the chlorine levels investigated in this study.  相似文献   

18.
Cofiring coal in municipal solid waste incinerators (MSWls) has previously been reported to reduce polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/Fs) emissions due to increasing the flue gas SO2 concentration. The present study was focused on understanding the primary mechanism responsible for the suppressant effect of SO2 on total PCDD/F formation and toxic equivalent (TEQ) emissions. The addition of SO2, simulating the effect of coal addition on the flue gas composition, resulted in significant reductions in the TEQ emissions due to reactions involving SO2 in the postcombustion zone. However, emissions of total PCDDs/Fs, unlike the TEQ value, were dependent upon the Cl2 and SO2 injection temperatures due to increases in non-TEQ correlated isomers. The conversion of metal chlorides in the fly ash to sulfates, thus reducing the sites responsible for chlorination/oxidation reactions, was concluded to be the main suppressant mechanism; proposed reactions for copper and iron are presented. This mechanism was found to be independent of combustion conditions and could have prolonged effects on PCDD/F emissions from deposits formed with high flue gas S/Cl ratios.  相似文献   

19.
This study set out to identify possible PCDD/F emission sources for different atmospheric environments in a highly industrialized city located in southern Taiwan. We collected stack flue gas samples from five main stationary emission sources of the municipal solid waste incinerators (MSWIs), medical waste incinerators (MWIs), electric arc furnaces (EAFs), secondary aluminum smelters (ALSs), and sinter plants to assess the characteristics of their PCDD/F emissions. For mobile sources, congener profiles reported in U.S. EPA's database for unleaded gas-fueled vehicles (UGFV) and diesel-fueled vehicles (DFV) were directly adopted owing to lack of local data. The congener profiles of the 2,3,7,8-substituted PCDD/Fs were selected as the signatures of these PCDD/F emission sources. We conducted PCDD/F samplings on atmospheric environments of four categories, including background, residential area, traffic area, and industrial area. Through PCA and cluster analyses, we found that traffic areas were most influenced by PCDD/F emissions from UGFV and DFV, while those of industrial areas were mainly influenced by metallurgical facilities and MWIs. The above results were further examined by using the methodology of the indicatory PCDD/Fs. We confirmed that traffic areas were contributed by traffic sources, but industrial areas were simply affected by metallurgical facilities rather than MWIs. In conclusion, besides the use of PCA and cluster analyses, the methodology of the indicatory PCDD/Fs should be conducted for further validation in order to prevent misjudgment.  相似文献   

20.
PCDD/Fs and PCBs have been analyzed in a series of archived soil samples collected from various depths during the 1800s and early 1900s. PCBs were not found in soil samples collected before 1900, whereas PCDD/Fs were present in concentrations between 43 and 110 pg/g in surface soils, and between 9 and 150 pg/g in soils collected from below the surface. The PCDD/F homologue patterns of all surface soils were consistent with each other. The homologue pattern of deeper soils altered with depth to one that was dominated by highly chlorinated PCDDs. The highest sigma(4-8)PCDD/F concentration (150 pg/g) was found in the deepest soil analyzed (230-250 cm below the surface). The cork from one of the storage bottles contained considerable quantities of both PCBs and PCDD/Fs. However, contamination of the soils, either by diffusion through the cork or by cork particles, was discounted on the basis that no PCBs were evident in the soil, and that the PCDD/F homologue pattern in the cork was very different to that found in the soil. Similar arguments were used to discount contamination of the soil by dust. A sample of ashed vegetation from the archive, that had no cork stopper, contained high concentrations of PCBs (78 ng/g), concentrations of mono- to tri-CDFs that were higher than in any of the soils (190 pg/g), but very low concentrations of sigma(4-8)PCDD/F (12 pg/g). This pattern of analytes was considered to be representative of contamination from store room air and was completely different from the pattern observed in the soils. Taken together these observations indicate that contamination during storage, or subsequent handling, is unlikely to have occurred in archived soil samples that were stored with cork and wax seal intact. The results imply surface soil sigma(4-8)PCDD/F concentrations of around 60 pg/g at Rothamsted (southeast England) in the late 1800s, compared with approximately 300 pg/g reported for rural UK soils in the 1990s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号