首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modeling of Moisture Diffusion in Microwave Drying of Hardwood   总被引:3,自引:0,他引:3  
A one-dimensional mathematical model was developed to predict temperature and moisture content profiles in red maple (Acer rubrum L.) and white oak (Quercus alba) during microwave drying. The model was solved using the finite element analysis with MATLAB software. The predictions for temperature and moisture content agreed favorably well with the experimental data. The diffusion coefficients of the red maple and the white oak in microwave drying conditions were calculated and analyzed. Equations of the diffusion coefficient in longitudinal and transverse directions based on input microwave power level are presented in this article. In microwave drying of hardwood, the red maple was heated more efficiently than the white oak because of higher absorbing efficiency of the microwave power.  相似文献   

2.
To remove the high moisture of ZhaoTong lignite, the efficient drying characteristics and oxygen-containing functional groups changes in lignite during microwave irradiation process were highlighted in this study. As the microwave absorbers, lignite char and NaNO3 were added to microwave drying of ZhaoTong lignite. The minimum chemical oxygen demand of waste water generated from microwave drying process of lignite was 99.89?mg?O2?L?1. The effects of microwave power, lignite mass, the weight ratio of lignite char to lignite and NaNO3 content on the drying rate, and moisture diffusion coefficient of lignite were investigated during lignite microwave irradiation process. It was found that the drying rate and moisture diffusion coefficient of lignite increased with increasing microwave power, the weight ratio of lignite char to lignite and NaNO3 content, but decreased with increasing lignite mass. Lignite char and NaNO3 were mixed with lignite that can enhance the instantaneous surface temperature of lignite sample under microwave irradiation. Compared with addition of lignite char to lignite, the addition of NaNO3 to lignite can decrease the unit electric power consumption of moisture evaporating. And the minimum unit electric power consumption of moisture evaporating was 9.44?Wh?g?1. The FTIR technology was used to investigate the oxygen-containing functional groups changes in lignite during microwave drying process. The oxygen-containing functional groups of lignite were effectively removed with increasing microwave power.  相似文献   

3.
The commercially available paprika at 16.25% (db) moisture was quickly finish-dried using microwaves at higher power density (5–25?W?g?1). The moisture diffusivity was estimated using Fick’s second law of diffusion and the generalized kinetic model was used to estimate the color degradation rates. The moisture diffusivity and color degradation showed a close correlation with the difference between the average product temperature (T) achieved due to microwave heating, and average glass transition temperature (Tg) of paprika. Acceleration in moisture diffusion and color degradation was observed with the rise in the difference between the T and Tg. Further, the color degradation rate showed correlation with monolayer moisture content, average moisture content, T, and Tg of paprika during finish drying. The constants of the Gordon and Taylor model showed the less plasticization effect of water. Also, Tg showed a good correlation between water activity and moisture content. The activation energies for moisture diffusion and color degradation were found to be 92.53 and 11.03?kJ mol?1, respectively. The microstructural analysis of finish-dried paprika showed the expanded and newly formed intercellular spaces. The developed correlations can be used to simulate heat and mass transfer operations such as drying and sterilization.  相似文献   

4.
Donghua Jia 《Drying Technology》2013,31(9):1103-1111
A 2D comprehensive heat and mass transfer model was developed to simulate the free liquid, vapor, and bound water movement in microwave drying of white oak specimens. The experimental and model results showed that, for white oak, moisture movement was easily impeded and high gradient of internal vapor pressure occurred. The internal vapor pressure was affected by sample dimension (length and thickness). At the same input power density, the internal pressure generated in the core increased with the sample length and thickness. However, as compared with sample length, sample thickness has less effect on the pressure gradient because of the high ratio of permeability between longitudinal and transverse directions.  相似文献   

5.
This article analyzes the influence of frequency, temperature, moisture content, and structural orientation on the applicability of the Beer-Lambert law for various wood species using radio frequency and microwave radiation. To achieve this objective, the study compares the power dissipation computed from Maxwell's equation and Lambert's power law. The wood species considered are white oak (Quercus alba), Douglas fir (Pseudotsuga menziesii), trembling aspen (Populus tremuloides), white birch (Betula paperyfera), yellow birch (Betula alleghaniensis), sugar maple (Acer saccharum), and four commercial hardboards. The dielectric constant and dielectric loss factor are examined as a function of moisture conditions, temperature, frequencies, and the three principal structural orientations. The study involved 3,000 complex dielectric constants. It was found that the radial critical thickness is somewhat smaller than the tangential critical thickness (0.95 times smaller) and the longitudinal critical thickness is significantly smaller than the radial (0.52 times). It was demonstrated that the critical thickness L crit above which the Beer-Lambert law is valid for all of the wood species studied under various conditions obeys the following conditions: log10(L crt) = 0.999 log10?1) + 0.4122, where β?1 is the penetration depth (cm). In the case of microwave radiation, the critical thickness can be estimated from L crt = 2.615 β?1 ? 0.0626. Finally, a model is proposed to take into consideration the effect of moisture content with frequency (or with attenuation constant).  相似文献   

6.
ABSTRACT

The conclusions drawn by researchers on the source of changing shrinkage rates are discussed. The objective of this study was to determine the source of changing shrinkage rates early in drying and whether shrinkage would make a useful parameter for an automated kiln control system. In this study, four loads of red oak and one of maple were kiln dried using established schedules Shrinkage of the lumber was continuously recorded, and moisture content and released elastic strain were periodically recorded. The moisture content and strain data showed that the changing shrinkage rates early in drying boards were caused by reduced internal stress levels, not the occurrence of fiber saturation point or temperature as reported by some. Results of this study indicate it may be possible to develop an automated kiln system using shrinkage as the controlling parameter. This would reduce the drying time while avoiding additional drying defects.  相似文献   

7.
《Ceramics International》2022,48(20):30430-30440
Ca–ZrO2 is an essential structural and functional material, which is commonly used in refractories, electronic ceramics, and functional ceramics. The properties of Ca–ZrO2 materials are depending on the quality of Ca–ZrO2 powders. The main factors affecting the quality of powder are sintering temperature and the drying effect. This paper applied modern microwave drying technology to dry Ca–ZrO2 powder. The impact of initial mass, microwave heating power, and initial moisture content on the drying of Ca–ZrO2 were explored. The results showed that the average drying rate increased with the rise of initial mass, microwave heating power, and initial moisture content. Wang and Singh, Page, and Quadratic Model were applied to fit Ca–ZrO2 with an initial moisture content of 5.6%, mass of 30 g, and microwave output power of 400 W. The results displayed that the Page model had a better fitting effect. It was also applicable to other different initial moisture content, original mass, and microwave heating power. The diffusion coefficient calculated by Fick's second law displayed that with the increase of initial mass, initial moisture content, and microwave heating power of Ca–ZrO2, the effective diffusion coefficient increased first and then declined. When the Ca–ZrO2 of microwave heating power was 640 W, mass was 30 g, and the moisture content was 5.65%, the effective diffusion coefficients of zirconia were 1.42533 × 10?13, 2.91806 × 10?13, 5.652.2471 × 10?13 m2/s, respectively. To determine the activation energy of microwave dried zirconia, using the relationship between microwave power and activation energy, the activation energy of microwave dried zirconia was calculated to be ?23.39 g/W. This paper aims to rich experimental data for the industrial application of microwaves to strengthen dried zirconia and propose a theoretical basis.  相似文献   

8.
ABSTRACT

A mathematical model able to predict solid and drying gas temperature and moisture content axial profiles along a direct contact rotary dryer was developed. The study was focused on the drying kinetics based on phenomenological models. Two different drying mechanisms in the decreasing drying rate period were tested: proponional to the unbound moisture content and moisture diffusion inside the particle. Experimental data collected in a pilot-scale direct contact rotary dryer was used to validate the model. Soya and fish meals were used as drying material.  相似文献   

9.
The most appropriate maturity stage of Moringa oleifera leaves was selected for drying based on phytochemical content, including quercetin and kaempferol. Desorption isotherms were developed and were best fit by the modified Henderson model. Prior to drying, samples were left untreated, blanched in boiling water, and blanched in NaHCO3/MgO. The leaves were dried by hot air tray drying (TD) and heat pump–dehumidified drying air (HPD) at air temperatures of 40, 50, and 60°C. Alternatively, leaves were subject to microwave drying (MWD) at 150, 450, and 900 W and to freeze drying (FD). The moisture versus time data were fitted to five drying models. In general, a three-parameter model gave the best fit. The drying constant was related to the drying temperature or microwave power using an Arrhenius model. Effective moisture diffusivity (D eff) increased with higher drying temperature, higher microwave power, or blanching treatments. Structural changes in the leaves after drying and upon rehydration were observed by scanning electron microscopy (SEM). Leaves blanched and dried using HPD at 50°C and fresh and dried using FD showed a partial breakdown of the tissue structure upon rehydration. HPD and blanching reduced the drying time by 8.3% and increased quercetin and kaempferol levels by 42.1 and 51.4%, respectively, compared to TD at 50°C. MWD provided the quickest drying followed by HPD and TD, respectively. HPD drying of M. oleifera after blanching resulted in relatively greater quality compared to TD and MWD.  相似文献   

10.
In this work, the effects of power level and sample mass on moisture content, moisture ratio, drying rate, and drying time of Turkey okra (Hibiscus esculenta L.) were investigated using microwave drying technique. Various microwave power levels ranging from to 180 to 900 W were used for drying of 100 g of okra. To investigate the effect of sample mass on drying, the samples in the range of 25 to 100 g were dried at microwave power level of 360 W. To determine the kinetic parameters, the drying data were fitted to various models based on the ratios of the differences between the initial and final moisture contents and equilibrium moisture content. Among of the models proposed, Page's model gave a better fit for all drying conditions used. The activation energy for microwave drying of okra was calculated using an exponential expression based on Arrhenius equation and was found to be 5.54 W/g.  相似文献   

11.
Abstract

Microwave rotary drum drying of whole garlic bulbs was investigated for the Aspergillus niger inactivation and moisture removal. The Weibull and Bigelow models were applied to microbial inactivation data. Garlic bulbs with initial moisture content in the range 1.95–2.14?g water g?1?dry matter were dried up to 0.06?g water g?1?dry matter. The microwave power density (PD) was varied from 1.03 to 2.67 Wg?1 at 1.5 and 2.0 pulsation ratios (PRs). Effect of PD and PR on A. niger inactivation, product temperature, moisture diffusivity, moisture ratio, drying rate, color, and sensory parameters was studied. Page model was found to be a better fit for microwave rotary drying characteristics of whole garlic bulbs. Microwave rotary drum drying resulted in the average log reduction of A. niger between 1.12 and 1.60. Weibull model predicted A. niger inactivation better than the Bigelow model as it considered the nonlinearity associated with a microbial population in the sterilization process. Garlic powder prepared at 2.0 PR and 1.85 Wg?1 PD was chosen as the best process based on sensory score. The cracking and peeling of garlic cloves were observed during microwave rotary drum drying. The SEM images confirmed the increase in the pore size of the microwave treated garlic sample than the untreated garlic which might be the reason for cracking and loosening of peel in garlic.  相似文献   

12.
L. Lu  J. Tang  X. Ran 《Drying Technology》2013,31(3):414-431
ABSTRACT

Microwave drying characteristics of sliced foods were investigated using potatoes (Solarium tuberosum) as a test model. Sliced samples were dried to 7-10% moisture content at microwave power levels between 2.2 W/g and 3.6 W/g (raw material). Moisture and temperature changes during drying were monitored. Semi-empirical models were developed that followed temperature and moisture changes during microwave drying. Sliced potatoes experienced three distinct periods: a warming-up period with little removal of moisture; a constant temperature period in which most of the drying took place; and a heating up period in which the drying rate decreased and sample temperature increased rapidly, often causing partial charring. Product temperature during the second period of microwave drying increased with sample thickness and microwave power. Drying rates were not affected by slice thickness, but increased with the microwave power/mass ratio. Product charring towards the end of drying may be avoided by reducing microwave power and increasing ambient air velocity.  相似文献   

13.
Abstract

An outline of the mechanistic model of convective and microwave drying of saturated capillary-porous materials is presented. The model was derived in the framework of irreversible thermodynamics. Particular attention is devoted to construction of the term describing the power of microwave radiation absorbed per unit volume, which is converted into internal heat source. The qualitative difference in distribution of temperature, moisture content, and the drying-induced stresses in materials under convective and microwave drying is illustrated in the examples of cylindrical kaolin samples. The diagrams of acoustic emission are taken off on-line from these samples in order to illustrate the development of material destruction caused by the stresses induced during both convective and microwave drying.  相似文献   

14.
Abstract

The aim of this study was to improve the drying uniformity and quality of Pleurotus eryngii by using the combination of microwave drying and hot-air flow rolling drying. The moisture content, drying uniformity, and water migration of P. eryngii during microwave hot-air flow rolling drying (MARD) were analyzed in detail. The temperature distribution images were obtained via infrared thermal imaging techniques and the relationship between relaxation time and signal amplitude were obtained via low-field nuclear magnetic resonance analysis and imaging (LF-NMR/MRI). The curves of signal amplitude with moisture content changes were fitted by a linear model with good linearity correlation. It was found that the hot-air and rolling bed could improve the drying uniformity of microwave drying. And the free water was found to transform into immobilized water and bound water during the drying process. Only a small amount of water was left in the dried P. eryngii in the final stage. The results could provide supportive information for improving the uniformity and quality of the drying processes of the edible fungi.  相似文献   

15.
ABSTRACT

In continuation of a series of tests, the original results of oak drying in an evacuated kiln are presented here for different plate temperatures and for various pressures in the kiln. These results include more particularly the drying curves, the evolution of temperature, of moisture and of pressure in and on the wood. They evidence the pressure and the levels of temperature occurring in the wood during the drying period.

These results also allow the development of two types of drying models a simple monodimensional model of drying curves from the analytical solutions of the equations of water diffusion in the wood and, moreover, a model, in two dimensions, of temperature, moisture and pressure fields in the wood by applying the finite element method. The boundary conditions of the second model can be fixed with precision thanks to the results of the first model. In both cases, the proposed solutions are justified by experimental results.  相似文献   

16.
From experimental data, Spirulina effective moisture diffusivity was analytically estimated by considering two diffusion regions and the product shrinkage. Then, the moisture diffusivity was deduced from the numerical solutions of mass transfer equations by minimizing the difference between experimental and simulated drying curves and by taking into account the slab thickness variation. The range of moisture diffusivity used for simulations was estimated from minimal and maximal values of experimental effective diffusivities and calculation started with the mean value of experimental effective diffusivities. Identified effective diffusivities ranged from 1.79 × 10?10 to 6.73 × 10?10 m2/s. These diffusivities increased strongly with drying temperature and decreased slightly with moisture content. A suitable model correlating effective diffusivity, temperature, and moisture content was then established. Effective diffusivities given by this model were very close to experimental ones with a relative difference ranging from 0.5 to 24%.  相似文献   

17.
《Drying Technology》2013,31(8):1555-1568
The finite difference approximation is applied to estimate the moisture-dependent diffusion coefficient by utilizing test data of isothermal moisture desorption in northern red oak (Quercus rubra). The test data contain moisture distributions at discrete locations across the thickness of specimens, which coincides with the radial direction of northern red oak, and at specified times. Also, the rate of moisture variation at each specified time and location must be known or correctly estimated. The functional form of the diffusion coefficient as well as the boundary conditions at the surfaces are not known a priori. The resulting system of finite difference equations defines an inverse problem, whose solution may be sensitive to small changes of input data. Results indicate that the diffusion coefficient increases with increasing moisture content below the fiber saturation point, which defines the upper limit applied by the diffusion theory.

  相似文献   

18.
Phenolic compounds are generally believed to be key components of the oxidative defenses of plants against pathogens and herbivores. However, phenolic oxidation in the gut fluids of insect herbivores has rarely been demonstrated, and some phenolics could act as antioxidants rather than prooxidants. We compared the overall activities of the phenolic compounds in red oak (Quercus rubra) and sugar maple (Acer saccharum) leaves in the midgut fluids of two caterpillar species, Malacosoma disstria (phenolic-sensitive) and Orgyia leucostigma (phenolic-tolerant). Three hypotheses were examined: (1) ingested sugar maple leaves produce higher levels of semiquinone radicals (from phenolic oxidation) in caterpillar midgut fluids than do red oak leaves; (2) O. leucostigma maintains lower levels of phenolic oxidation in its midgut fluids than does M. disstria; and (3) phenolic compounds in tree leaves have overall prooxidant activities in the midgut fluids of caterpillars. Sugar maple leaves had significantly lower ascorbate:phenolic ratios than did red oak leaves, suggesting that phenolics in maple would oxidize more readily than those in oak. As expected, semiquinone radicals were at higher steady-state levels in the midgut fluids of both caterpillar species when they fed on sugar maple than on red oak, consistent with the first hypothesis. Higher semiquinone radical levels were also found in M. disstria than in O. leucostigma, consistent with the second hypothesis. Finally, semiquinone radical formation was positively associated with two markers of oxidation (protein carbonyls and total peroxides). These results suggest that the complex mixtures of phenolics in red oak and sugar maple leaves have overall prooxidant activities in the midgut fluids of M. disstria and O. leucostigma caterpillars. We conclude that the oxidative defenses of trees vary substantially between species, with those in sugar maple leaves being especially active, even in phenolic-tolerant herbivore species.  相似文献   

19.
DETERMINING THE SOURCE OF CHANGING SHRINKAGE RATES DURING KILN DRYING   总被引:1,自引:0,他引:1  
The conclusions drawn by researchers on the source of changing shrinkage rates are discussed. The objective of this study was to determine the source of changing shrinkage rates early in drying and whether shrinkage would make a useful parameter for an automated kiln control system. In this study, four loads of red oak and one of maple were kiln dried using established schedules Shrinkage of the lumber was continuously recorded, and moisture content and released elastic strain were periodically recorded. The moisture content and strain data showed that the changing shrinkage rates early in drying boards were caused by reduced internal stress levels, not the occurrence of fiber saturation point or temperature as reported by some. Results of this study indicate it may be possible to develop an automated kiln system using shrinkage as the controlling parameter. This would reduce the drying time while avoiding additional drying defects.  相似文献   

20.
A puffed food using salted duck egg white and starch as ingredients was produced by using a novel pulsed-spouted microwave vacuum drying (PSMVD) technique. In this study, three types of samples (ratios of salted duck egg white to starch 1:10, 3:10, and 5:10) were prepared and the moisture content of these samples was dehydrated to about 12% in a PSMVD dryer, then the samples were under different microwave powers (1.34 kW, 2.01 kW, and 2.68 kW) for puffing. The product volume expansion ratio, textural crispness (breaking forces), color parameters (L*, a* and b*), and sensory scores were determined. It was observed that microwave power and different ratios of salted duck egg white to starch had a significant effect on the expansion effect of the samples. The results indicated that the best product quality was obtained under the ratio of salted duck egg white to starch at 3:10 and microwave power at 2.01 kW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号