首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《分离科学与技术》2012,47(11):1731-1739
In this work, the thin layer drying behavior of dredged sludge from Dian Lake by convective drying methods was investigated. The results showed that the Modified Page-I model was more suitable for thin-layer drying of dredged sludge. The values of the diffusion coefficients at each temperature were obtained using Fick’s second law of diffusion, and it was varied from 6.472×10?9 to 1.143×10?8 m2/s when the temperature was changed from 100 to 160°C for the dredged sludge of 10 mm. When the thickness was changed from 5 to 20 mm, the diffusion coefficients were varied from 4.036×10?9 to 2.648×10?8 m2/s at 140°C. The activation energy of moisture diffusion was 13.1 kJ/mol.  相似文献   

2.
Convective drying of wastewater sludges and sawdust/sludge mixtures was studied. The first part of this work was an experimental study performed in a cross-flow convective dryer using 500 g of wet material extruded through a disk with circular dies of 12 mm. The results showed that the sawdust addition has a positive impact on the drying process from a mass ratio of 2/8, on a dry basis, with observed drying rates higher than the original sludge. The second part of this work consisted of developing a drying model in order to identify the internal diffusion coefficient and convective mass transfer coefficient from the experimental data. A comparison was made between fitted drying curves, well represented by the Newton's model, and the analytical solutions of the diffusion equation applied to a finite cylinder. Variations of dimensional characteristics, such as the volume and exchange surface of the sample bed, were obtained by X-ray tomography. This technique allowed us to confirm that shrinkage, which is an important phenomenon occurring during sludge and sawdust/sludge mixture drying, must be taken into account. The results showed that both the internal diffusion coefficient and convective mass transfer coefficient were affected by mixing and sawdust addition. The internal diffusion coefficient changed from 7.77 × 10?9 m2/s for the original sludge to 7.01 × 10?9 m2/s for the mixed sludge and then increased to 8.35 × 10?9 m2/s for the mixture of a mass ratio of 4/6. The convective mass transfer coefficient changed from 9.70 × 10?8 m/s for the original sludge to 8.67 × 10?8 m/s for the mixed sludge and then increased to 12.09 × 10?8 m/s for the mixture of a mass ratio of 4/6. These results confirmed that sawdust addition was beneficial to the sludge drying process as the mass transfer efficiency between the air and material increased. Reinforcing the texture of sludge by adding sawdust can increase the drying rate and decrease the drying time, and then the heat energy supply will be reduced significantly. The study also showed that neglecting shrinkage phenomenon resulted in an overestimation for the internal diffusion coefficient for the convective drying of sludges and sawdust/sludge mixtures.  相似文献   

3.
An empirical physical model was derived from the Weibull distribution and investigated for its ability to describe the moisture content for common atmospheric (or convective) freeze-drying processes (AFD). A set of experiments was performed for different products: peas, apple, pineapple, cod, and zooplankton. The effect of drying temperatures (?6°C, ?3°C, 0°C, 10°C and 20°C), approach velocities (1 m sec?1, 1.8 m sec?1, 2.6 m sec?1, 3.1 m sec?1, and 4.7 m sec?1), and particle sizes (8.7 mm, 15.7 mm, and 28.8 mm) was investigated using the selected products. Non-linear regression analyses showed good agreement between the model and experimental data. The coefficient of determination was at least 99.9% (R2 > 0.999) and the chi-square lower than 0.0001 (χ2 < 0.0001) for all investigations. The shape parameter β in the modified Weibull model varied in a narrow range from 0.661 to 0.937, which indicates that AFD is controlled by internal mass transfer (=diffusivity). The diffusivity (Dcalc) ranged from 1.554 to 8.681 10?9 m2 sec?1, depending on the product and drying conditions. The modification of the Weibull distribution can be used to describe AFD processes based on a simple empirical but highly accurate model and for the determination of the effective diffusion (Fick's law).  相似文献   

4.
This study investigates experimentally and using mathematical modeling the microwave drying of wastewater sludge with determination of moisture diffusivity at different drying conditions. The drying behavior was observed at different power levels (480, 840, and 1,080 W) and different initial masses (90, 120, and 150 g). The observed drying kinetics were divided into three parts: a short adaptation period, a long constant drying rate period, and a falling drying rate period. The maximum drying rate was observed during the constant rate period. Mainly, the results show that the drying rate decreases with the initial mass increase (from 0.45 kg·kg?1·min?1 for 90 g to 0.25 kg·kg?1·min?1 for 150 g) and increases with an increase in power level (from 0.15 kg·kg?1·min?1 at 480 W to 0.45 kg·kg?1·min?1 at 1,080 W). The measurement of the sample dimensions shows that shrinkage can occur and, depending on the drying conditions, it ranged between 0.42 and 0.37 of the sample initial volume. Presenting a more accurate solution of the diffusion model by incorporating shrinkage and finite dimensions of the sample is the novelty of this study. The drying conditions influenced the diffusion coefficient, which ranged from 1.53 × 10?7 to 7.67 × 10?7 m2s?1. Similar to the drying rate, the diffusion coefficient was directly proportional to the power level and inversely proportional to the initial mass. Activation energy was determined using an Arrhenius relationship of the diffusion coefficient as a function of the ratio initial mass to the power level.  相似文献   

5.
Single-layer solar drying experiments were conducted for Mexican tea leaves (Chenopodium ambrosioides) grown in Marrakech. An indirect forced convection solar dryer was used in drying the Mexican tea leaves at different conditions such as ambient air temperature (21° to 35°C), drying air temperature (45° to 60°C) with relative humidity (29 to 53%), airflow rate (0.0277 to 0.0556 m 3/s), and solar radiation (150–920 W/m2). The experimental drying curves showed only a falling rate period. In order to select the suitable form of drying curves, 14 mathematical models were applied to the experimental data and compared according to their statistical parameters. The main factor in controlling the drying rate was found to be the temperature. The drying rate equation was determined empirically from the characteristic drying curve. The diffusion coefficient of the Chenopodium ambrosioides leaves was estimated and varied between 1.0209 × 10?9 and 1.0440 × 10?8 m 2·s?1.The activation energy was found to be 89.1486 kJ·mol?1.  相似文献   

6.
The influence of pulsed electric field (PEF) and subsequent centrifugal osmotic dehydration (OD) on the convective drying behavior of carrot is investigated. The PEF was carried out at an intensity of E = 0.60 kV/cm and a treatment duration of t PEF  = 50 ms. The following centrifugal OD was performed in a sucrose solution of 65% (w/w) at 40°C for 0, 1, 2, or 4 h under 2400 × g. The drying was performed after the centrifugal OD for temperatures 40–60°C and at constant air rate (6 m3/h).

With the increase of OD duration the air drying time is reduced spectacularly. The dimensionless moisture ratio Xr = 0.1 is reached for PEF-untreated carrots after 370 min of air drying at 60°C in absence of centrifugal OD against 90 min of air drying after the 240 min of centrifugal OD. The PEF treatment reduces additionally the air drying time. The total time of dehydration operations can be shortened when OD time is optimized. For instance, the minimal time required to dehydrate untreated carrots until Xr = 0.1 is 260 min (120 min of OD at 40°C and 140 min of drying at 60°C). It is reduced to 230 min with PEF-treated carrots.

The moisture effective diffusivity D eff is calculated for the convective air drying based on Fick's law. The centrifugal OD pretreatment increases drastically the value of D eff . For instance, 4 h of centrifugal OD permitted increasing the value of D eff from 0.93 · 10?9 to 3.85 · 10?9 m2/s for untreated carrots and from 1.17 · 10?9 to 5.10 · 10?9 m2/s for PEF-treated carrots.  相似文献   

7.
8.
Van der Sluis et al.'s model was used to determine the rate of the partial dissolution of a Tunisian phosphate rock with dilute phosphoric acid (1.5 mass% P2O5). When the temperature rises from 25 to 90°C, for a given particle size, the mass-transfer coefficients, kL°, vary from 3 × 10?3 to 8 × 10?3 m ·s?1. The corresponding diffusion coefficients, D, lies between 6 × 10?7 and 27 × 10?7 m2·s?1. Activation energy is equal to 14 kJ·mol?1 and values of kL°, at 25°C, are in the range of 0.28 × 10?3 and 4 × 10?3 m·s?1 when the agitation speed goes from 220 to 1030 rpm, showing that the leaching process is controlled by diffusion rather than by chemical reaction.  相似文献   

9.
The wood from which xylite is formed in a long-term process undergoes numous changes while still retaining the character of a hygroscopic porous material. To plan the optimal drying schedule of xylite, the permeability coefficient, diffusion coefficient, and surface emission coefficient were determined. The porosity of xylite is low due to the demolished capillary structure; concurrently with the blocked pits, the permeability of xylite is very low, with a permeability coefficient not higher than 2.12 × 10?10 m2/Pa s. The capillary flow of free water is insignificant, allowing the diffusion transport of water to prevail. The diffusion coefficient is considerably influenced by the xylite's density. We confirm a significant increase in the bound water diffusion coefficient as the temperature increased (from 5.5 × 10?12 m2/s at 20°C to 46.3 × 10?12 m2/s at 40°C), and we predict that the activation energy will increase as the moisture content of xylite decreases (approx. 0.63 to 1.05%/% MC changes). As a consequence of the low surface resistance, the surface emission coefficient barely influences the moisture transport below the fiber saturation point.With an appropriate drying schedule, quality dried xylite can be used for various products as an equivalent substitute for dark-colored, high-density woods like ebony.  相似文献   

10.
Desirable flavor qualities of cocoa are dependent on how the cocoa beans are fermented, dried, and roasted. During fermentation and drying, polyphenols such as leucocyanidin and apecatechin are oxidized by polyphenols oxidase to form o-quinone, which later react nonenzymatically with a hydroquinone in a condensation reaction to form browning products and moisture. The objective of this article is to model the cocoa beans drying together with the browning reaction. A Luikov drying model for the moisture and a simple Fick's law diffusion model combined with first-order reactions for both the enzymatic oxidation and nonenzymatic condensation reactions were constructed. Both models were used to identify moisture diffusivity coefficient and total polyphenols diffusivity in cocoa beans from experimental drying and polyphenols degradation data and published kinetic data of the reactions. The theoretical drying model fitted the experimental cocoa bean drying curves with low mean square of residuals. The polyphenols diffusion and reaction model also fitted the experimental polyphenols degradation curves with minimum mean residual squares. The rate of polyphenols degradation in the cocoa beans increases at higher temperature and higher relative humidity. This is because the increasing reaction rate of polyphenols oxidation reaction as well as higher moisture diffusion at higher relative humidity and temperature. The effective moisture diffusivity in cocoa beans is estimated to be between 8.194 × 10?9 and 8.542 × 10?9 m2·s?1, which is of the same order of magnitude as published data. The effective total polyphenols diffusivity is estimated to be between 8.333 × 10?12 to 1.000 × 10?11 m2·s?1 with minimum mean residual squares. It is three orders of magnitude less than the estimated moisture diffusivity because of the larger polyphenols molecules. The estimated polyphenols diffusivity is very close to those published in the literature for sorption and ultrafiltration processes.  相似文献   

11.
A study was performed to determine the drying characteristics and quality of barley grain dried in a laboratory scale spouted-bed dryer at 30, 35, 40, and 45°C and an inlet air velocity of 23 m/s?1, and in an IR-convection dryer under an infrared radiation intensity of 0.048, 0.061, 0.073, and 0.107 W cm?2 at an air velocity of 0.5 m/s?1. The results show that the first, relatively short, phase of a sharp decrease in the drying rate was followed by the phase of a slow decrease. The time of barley drying depended on temperature of inlet air in a spouted-bed dryer and on radiation intensities in an IR-convection dryer. Barley drying at 45°C in a spouted-bed dryer was accompanied by the lowest total energy consumption. The average specific energy consumption was lower and the average efficiency of drying was higher for drying in a spouted-bed dryer. The effective diffusivities were in the range 2.20–4.52 × 10?11 m2 s?1 and 3.04–4.79 × 10?11 m2/s?1 for barley dried in a spouted-bed and in an IR-convection dryer, respectively. There were no significant differences in kernel germination energy and capacity between the two drying methods tested.  相似文献   

12.
Thin-layer drying of moist flax fiber was performed at four temperatures of 30, 50, 70, and 100°C with a constant absolute humidity of 0.0065 kg water per kg dry air. The coefficients of diffusion of the fiber at different drying conditions were estimated by modeling the drying process using the one- to five-term solutions of the second Fick's law of diffusion. The models underestimated the drying process during the initial stages of drying and overestimated this process during the final stages. The estimated coefficient of diffusions ranged from 5.11 × 10?9 to 1.92 × 10?8 m2/s and linearly increased with the drying air temperature.  相似文献   

13.
The kinetics of the adsorption of various dyestuffs onto chitin have been studied. The dyestuffs used are Neoland Blue 2G, Eriochrome Flavine A, and Solophenyl Brown 3RL and a number of process variables were considered, such as adsorbent mass and dye concentration. The mass transfer model is based on the assumption of a pseudoirreversible isotherm and two resistances to mass transfer. These are external mass transfer and internal pore diffusion mass transfer. The rate of adsorption of dyestuffs onto chitin can thus be described by an external mass transfer coefficient and a pore diffusion coefficient. The external mass transfer coefficients are 5.0 × 10?5, 5.0 × 10?5, and 1.0 × 10?5 m·s?1 and the pore diffusivities are 3.0 × 10?10 and 4.0 × 10?11 m2·s?1 for Neolan Blue 2G, Eriochrome Flavine A, and Solophenyl Brown 3RL, respectively.  相似文献   

14.
This article describes the analysis of heat and mass transfer coefficients for a single board of Pinus radiata (D. Don) timber over a range of high temperature and superheated steam drying conditions. The calculated heat transfer coefficients were in the range 20 to 60 W m?2 K?1. The mass transfer coefficients were of the order of 2 × 10?8 to 3 × 10?7 kg m?2 s?1, based on the vapor pressure difference, and of the order of 0.002 to 0.04 m s?1 (expressed in terms of mass transfer velocity) based on vapor concentration difference between the surface of the board and the bulk drying medium.  相似文献   

15.
Abstract

Air drying of camu-camu slices was performed in order to estimate the effect of air temperature on the kinetics of ascorbic acid thermal degradation. Moisture variation during the air drying process was monitored gravimetrically by weighing the trays at predetermined time intervals. The experimental points were adjusted by Fick's diffusion model and by the Page empirical model. The effective diffusion coefficient (Deff) ranged from 8.48 × 10?10 to 1.34 × 10?9 m2/s.The ascorbic acid content was evaluated in samples taken during the drying process using Iodine titration, and the results modeled by the Weibull equation. Concerning ascorbic acid retention the best drying condition required air at 50°C. The ascorbic acid retention was 78%, when the moisture content of the product reached 10% (wet basis).  相似文献   

16.
The drying behavior of a single rice kernel subjected to convective drying was analyzed numerically by solving heat and moisture transfer equations using a coupled computational fluid dynamics (CFD) and diffusion model. The transfer coefficients were computed simultaneously with the external flow field and the internal diffusive field of the grain. The model was validated using results of a thin-layer drying experiments from the literature. The effects of velocity and temperature of the drying air on the rice kernel were analyzed. It was found that the air temperature was the major variable that affected the drying rate of the rice kernel. The initial drying rates (in first 20 min) were 7, 12, and 19% per hour at inlet air temperatures of 30, 45, and 60 ° C, respectively. Important temperature gradients within the grain existed only in the first few minutes of the drying process. The moisture content gradients reached a maximum value of 11.7% (db) mm ?1 at approximately 45 min along the short axis in the thickness direction. The variation in the inlet air velocity showed a minor effect on the drying rate of the rice kernel. The heat and mass transfer coefficients varied from 16.57 to 203.46 W·m ?2·K ?1 and from 0.0160 to 0.1959 m·s ?1, respectively. The importance of the computation of the transfer coefficients with the heat and mass transfer model is demonstrated.  相似文献   

17.
A model is presented for drying of a single porous particle with superheated steam and humid air. Experimental data for spherical porous ceramic particle reported in the literature were used for the validation of the model. An inversion temperature at which the evaporation rates within superheated steam and humid air are equal was predicted. The effect of thermophysical properties of the particle (permeability 10?14 ? 10?17 m2, diameter 3 × 10?3 ? 10 × 10?3 m) and operating variables (gas mass flux 0.26 ? 0.78 kg m?2 s?1, drying agent temperature 120–200°C) is tested. The inversion temperature is shown to be affected by the thermophysical properties of the porous particle and of the drying agent.  相似文献   

18.
Drying sewage sludge is a highly energy-extensive process. For this reason, this work seeks to identify a reagent that can enhance the effectiveness of the drying process. In this study, drying experiments of sewage sludge were conducted at drying temperatures ranging from 100 to 160°C. NaHCO3 was selected as the drying reagent, which was added to the sludge before drying. The thin-layer drying characteristics of the sludge and sludge/NaHCO3 mixtures were later investigated and compared. Various mathematical models were used to simulate the sludge drying curves. It was found that adding 2 and 6% (wet basis) of NaHCO3 to the sludge was effective in improving the moisture diffusion during the drying process, whereas the drying rate of the sludge/NaHCO3 mixtures decreased when the addition of NaHCO3 was further increased to 10% (wet basis). When the addition ratio was 2%, the increase in the maximum drying rate was the largest. With coefficients of determination (R2) over 0.9999, the modified Midilli model proposed in this study was observed to be the most suitable model to describe thin-layer drying of sludge relative to the other models examined in terms of R2, reduced χ2, root mean square error, and residual sum of squares. The values of the diffusion coefficients at each temperature were obtained using Fick’s second law of diffusion, which varied from 3.700?×?10?9 to 1.085?×?10?8?m2/s over the temperature range (i.e., 100–160°C). The activation energy of moisture diffusion was determined to be 27.57?kJ/mol. Scanning electron microscope images of the dried sludge and sludge/NaHCO3 mixtures indicated that the porosity of the sludge after drying increased with an increase in the NaHCO3 addition ratio. Overall, the results suggested that NaHCO3 is a suitable reagent to improve the drying efficiency of the sludge.  相似文献   

19.
Experimental results of surface temperature and moisture content of twigs of mate were obtained in a conveyor-belt dryer operated batchwise. The first response was determined with an infrared sensor, while the second was by conventional gravimetry. A set of 0.04-m-long cylindrical twigs classified manually into three different subgroups on the basis of their diameters (3.5 × 10?3, 6.5 × 10?3, and 10 × 10?3 m) were used in the experiments. Drying always took place in a chamber fed with a thin single layer of material 0.5 m in length and 0.05 m wide. The fresh twigs without leaves at ambient temperature (≈27.2 ± 2.6°C) and with an initial moisture content close to 0.8 ± 0.1 were dried at three different average air temperatures (65.5, 80.2, and 83.8°C) for 7200 s. A full set of nine (31 × 31) drying experiments were performed by varying the examined factors (particle diameter and drying temperature) at three levels. The low estimated Biot numbers (<0.55) indicate that convection plays a much more important role than conduction in heat transfer. Because of this and since heating was much faster than drying, the Newton’s law of cooling alone was successfully applied to describe the increase of particle temperature with time. From a similar analysis involving a convective mass transfer coefficient calculated with the Chilton-Colburn analogy emerged high-mass-transfer Biot numbers (≈5.37 × 103 ? 3.65 × 105) that reveal drying of twigs is governed by diffusion. In fact, the equation that represents the Fick’s second law of diffusion in a long cylinder (one-dimensional transfer), solved analytically and coupled to the model of heat transfer, was able to describe the kinetics of drying of mate twigs.  相似文献   

20.
A new approach to experimental evaluation of mass transfer resistances from drying experiments is proposed. A composite model of ginseng root mass transfer, based on one-dimensional treatment of diffusive and convective resistances as additive components of radial mass transfer, was developed. Mass transfer resistance was evaluated from a linear relationship between measured flux and thermodynamic driving force. Partitioning of mass transfer resistance into diffusive (core and skin) and convective (air boundary layer) resistances was done by modification of boundary conditions: (a) high (3 m/s) and low (1 m/s) air velocity; (b) skin removal. Total radial mass transfer resistance was evaluated as (146 ± 6) ? 106 s/m at 38°C, significantly decreasing to (48 ± 1.5) ? 106 s/m at 50°C. Boundary resistance was evaluated as (54 ± 5) ? 106 s/m at 38°C and (26 ± 3) ? 106 s/m at 50°C in the entire range of moisture contents. Core and skin resistances were both moisture dependent: core resistance increased from initial value of (6 ± 1) ? 106 s/m to (61 ± 6) ? 106 s/m toward the end of drying, whereas skin resistance decreased from initial value of (92 ± 5) ? 106 s/m to (25 ± 5) ? 106 s/m at the endpoint of drying. However, the sum of core and skin resistances, which represents composite diffusive resistance of intact ginseng root, was constant and independent of moisture content: (91 ± 4.6) ? 106 s/m at 38°C and (22 ± 1.6) ? 106 s/m at 50°C. The relationship between mass transfer resistance R and drying rate factor k = 1/RC was used for verification of the composite model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号