首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of heat treatment on the properties of cured two-stage phenolics was studied. Samples were compression-molded from the compound that was prepared from novolac, wood flour (100 phr), and hexamethylenetetramine (15 phr). Samples were heat-treated in conditions of four levels for temperature (150°C, 170°C, 190°C, and 210°C) and time (4, 8, 16, and 24 h). The properties of samples heat-treated, such as weight loss, dimensional stability, water absorption after boiling, and flexural properties were measured. The relation between the properties and the conditions of heat treatment was examined statistically. From the results, it was decided that the optimum conditions of heat treatment for practical use were: (i) to decrease water absorption and to heighten electrical resistance, 210°C, 24 h; (ii) to improve flexural properties at room temperature and at 160°C; 170°C, 8 h, and 170–190°C, 24 h, respectively. It was concluded that the decrease of water absorption of moldings was due to the increase of hydrophobic nature of wood flour included in moldings by heat treatment and that the improvement of flexural property of moldings at 160°C was due to an increase of crosslinking density by heat treatment. The reasons for the improvement of the electrical properties by heat treatment were also discussed.  相似文献   

2.
With a view to evaluating the impact of the combination of densification and thermal treatment on dimensional stability and surface hardness, poplar (Populus lasiocarpa Oliv.) lumber was densified under three compression ratios (10, 18, and 25%), three press temperatures (130, 150, and 170°C), and two pressure holding times (15 and 35 min). It was subsequently thermally treated at three temperatures (180, 190, and 200°C) and three exposure times (1.5, 2.5, and 3.5 h). Density, density profiles, water-soaked radial (thickness) swelling, and surface hardness were examined. The results showed that the density of poplar was increased by 8–24% due to densification. Compared to the densified specimens, the average water-soaked radial swelling was reduced by 43% through thermal treatments. Compared to the nondensified and non-thermally treated specimens, the maximum water-soaked radial swelling was reduced by 38% after thermal treatment at 200°C for 3.5 h. When the compression ratio of 10, 18, or 25% was applied for the densification, the average surface hardness was increased from 18.9 to 27.1, 34.6, or 43.9 MPa, respectively. These hardness values are similar to or greater than that of birch, which is commonly used for hardwood flooring. It was concluded that the combination of densification and thermal treatment could convert the low-grade poplar into high-value products with improved dimensional stability and surface hardness.  相似文献   

3.
After polyglycerol polyglycidyl ether (PGPE) and glycerol polyglycidyl ether (GPE) were mixed with tannic acid (TA) in ethanol and without solvent at epoxy/hydroxyl ratio 1/1, the obtained GPE‐TA and PGPE‐TA solutions were mixed with wood flour (WF), prepolymerized at 50°C, and subsequently compressed at 160°C for 3 h to give GPE‐TA/WF and PGPE‐TA/WF biocomposites with WF content 50–70 wt %, respectively. The storage moduli of the biocomposites in the rubbery state at more than 80°C were much higher than that of the control cured resins. The PGPE‐TA/WF composites had higher tensile modulus and rather lower tensile strength than PGPE‐TA. On the other hand, both the tensile modulus and strength of GPE‐TA/WF were much higher than those of GPE‐TA (2.4 GPa and 37 MPa). Those values of GPE‐TA/WF increased with WF content, became maximal values (5.1 GPa and 51 MPa) at WF content 60 wt %, and were lowered at 70 wt %. FE‐SEM analysis of the fractured surface of the biocomposites revealed that WF is tightly incorporated into the crosslinked epoxy resins. As a result of optimization of the epoxy/hydroxyl molar ratio for GPE‐TA/WF composite with WF content 60 wt %, the composite prepared at the ratio of 1.0/0.8 showed the highest tensile modulus and strength. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
A two‐step heat treatment was utilized as a means to improve the mechanical properties of a high‐density polyethylene structure which was fabricated using the three‐dimensional printing technique. It was found that the relationship between structure and properties was strongly influenced by heat treatment conditions including treatment times (15–60 min) and treatment temperatures (140–180 °C) of both primary and secondary steps. The use of primary heating at 180 °C for 15 min and secondary heating at 160 °C for 60 min resulted in the highest tensile modulus and strength, 0.7 GPa and 14.8 MPa, respectively. The changes in both shrinkage and tensile properties were governed by the level of residual porosity and quality of polyethylene interface in samples which were both influenced by the degree of thermally induced densification and binder degradation. Empirical correlations between porosity and shrinkage or tensile properties were found to be power functions. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
The possibility of producing wood‐plastic panels using a melt blend/hot press method was studied in this research. The studied panels were compared with conventional medium density fiberboard (MDF) and particleboard (PB) panels. Wood‐plastic panels were made from high density polyethylene (as resin) and MDF waste and PB waste (as natural fiber) at 60, 70, and 80% by weight fiber loadings. Nominal density and dimensions of the panels were 1 g/cm3 and 35 × 35 × 1 cm3, respectively. Mechanical properties of the panels including flexural modulus, flexural strength, screw and nail withdrawal resistances, and impact strength were studied. Results indicated that the mechanical properties of the composites were strongly affected by the proportion of the wood flour and polymer. Maximum values of flexural modulus of wood plastic panels were reached at 70% fiber content. Flexural strength, screw and nail withdrawal resistance, and impact strength of wood plastic composites declined with the increase in fiber content from 60 to 80%. This was attributed to the lack of compatibility between the phases. The produced panels outperformed conventional PB panels regarding their mechanical properties, which were acceptable when compared with MDF panels as well. The best feature in the produced panels was their screw withdrawal resistance, which is extremely important for screw joints in cabinet making. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

6.
The reaction of pyrogallol (PG) and vanillin (VN), both of which are derived from plant resources, in the presence of p‐toluenesulfonic acid gave PG–VN calixarene (PGVNC) mainly composed of guaiacyl pyrogallol[4]arene. After sorbitol polyglycidyl ether (SPE) was mixed with PGVNC in tetrahydrofuran at an optimized epoxy/hydroxy ratio 1/2.65, the obtained SPE/PGVNC solution was mixed with wood flour (WF), prepolymerized at 150°C, and subsequently compressed at 190°C for 3 h to give SPE–PGVNC/WF biocomposites with WF content 0–20 wt%. The tan δ peak temperature of SPE–PGVNC was 148.1°C, which was much higher than that of the SPE cured with petroleum‐based phenol novolac (SPE–PN) at an optimized epoxy/hydroxy ratio 1/1. Although tan δ peak temperature slightly decreased with increasing WF content, the storage moduli of the SPE–PGVNC/WF biocomposites in the rubbery state at more than 150°C were much higher than those of SPE–PGVNC and SPE–PN. Also, the tensile modulus and strength for SPE–PGVNC/WF increased with increasing WF content. Field emission‐scanning electron microscopy analysis of the biocomposites revealed that WF is tightly incorporated into the crosslinked epoxy resins. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

7.
Heat treatment is a wood modification method that has been used to some extent in improving timber quality. The high temperature thermal treatment of wood is an environmentally friendly method for wood preservation. This technique has attracted considerable attention both in Europe and in North America in recent years.

This article presents the results of experimental studies on influence of heat treatment on the mechanical properties of Rowan (Sorbus aucuparia L.) wood performed in order to understand its role in wood processing. Samples were exposed to temperature levels of 120, 150, and 180°C for time spans ranging from 2 to 10 h. Mechanical properties including compression strength, modulus of elasticity, modulus of rupture, Janka hardness, impact bending strength, tension strength perpendicular to grain, tension strength parallel to grain, shear strength, and cleavage strength of heat-treated samples were determined. Maximum reduction values of 34.12, 28.40, and 26.37% were found for impact bending strength, tension strength parallel to grain, and cleavage strength for the samples exposed to 180°C for 10 h, respectively. Overall, the results showed that treated samples had lower mechanical properties than those of the control samples. Statistically significant difference was determined (P = 0.05) between mechanical properties of the control samples and those treated at 180°C for 10 h.  相似文献   

8.
A formaldehyde-free adhesive consisting of soy flour, polyethylenimine, maleic anhydride, and sodium hydroxide was investigated for making randomly oriented strandboard (R-OSB) and oriented strandboard (OSB). The hot-press conditions and the adhesive usage rate were optimized in terms of enhancing internal bond strength (IB), modulus of rupture (MOR), and modulus of elasticity (MOE) of the resulting R-OSB and OSB. The IB, MOR, and MOE were the highest at a hot-press temperature of 170°C, a hot-press time of 4–5 min, and an adhesive usage rate of 7%. The strengths of the OSB panels made with this formaldehyde-free adhesive were compared with those of commercial OSB panels purchased at a local Home Depot store.  相似文献   

9.
This study was conducted to investigate the adhesive properties of chicken feather (CF)-based adhesives for wood-based panels. CF was hydrolysed in sodium hydroxide solutions of 5%, 7.5% and 10% (CF-AK). Chicken blood (CB) hydrolysed in sulfuric acid solution of 5% (CB-AC) was used as a hardener. The adhesives were formulated by crosslinking 60% CF-AK, 10% CB-AC and 30% formaldehyde-based crosslinking agents (formalin, melamine-urea-formaldehyde and phenol-formaldehyde prepolymers) on a solid weight basis. The CF-based adhesives were very viscous at room temperature, but the viscosity at 50 °C ranged from 300 to 600 mPa·s resulting in a sprayable adhesive. From the DSC analysis, the use of CF-AK-10% in the CF-based adhesives need longer curing time compared with that of CF-AK-5%. Most mechanical strength properties and dimensional stability of MDF bonded with CF-based adhesives were similar to those of commercial urea-formaldehyde (UF) resin. However, internal bonding strength of most MDF bonded with CF-based adhesives was higher than that with the UF resin. Most adhesive properties of the MDF manufactured with the new CF adhesive met the Korean Standard requirements for interior MDF. These results suggest that CF and/or CB can be used as raw materials for environment-friendly adhesives for producing wood panels.  相似文献   

10.
Wood flour-polypropylene foamed composites, in ratios of 10:90, 20:80, 30:70, and 40:60 (wt./wt.), were prepared with and without maleic anhydride treatment of wood flour and maleic anhydride-grafted PP (MAgPP). The effects of the amount of wood flour and its treatment on the morphology, the mechanical properties, and the thermal properties of the composites were investigated. Vicat softening temperatures (VST) were recorded as 112.9°C, 103.2°C, and 96.2°C for MAgPP wood flour (MPP), maleic anhydride-treated wood flour (MWF), and untreated wood flour (UWF) (40:60 wt./wt.) foamed composites, respectively. The heat distortion temperatures (HDT) were measured to be 80°C, 76°C, and 58°C for the respective composites. DSC thermograms showed an increase in the crystallinity of MPP and MWF composites with an increase in the ratio of wood flour in the composite, whereas the opposite trend was observed in untreated wood flour. Except for impact strength and flexural strength, Young's modulus, flexural modulus, and hardness all increased with an increase in wood flour content. The micrographs confirmed the foaming. The improvement in the properties of the composites is due to the increment in interfacial bonding between polymer and wood flour, which is caused by the compatibilizers.  相似文献   

11.
After a bio‐based epoxy resin, sorbitol polyglycidyl ether (SPE) was mixed with a flavonoid, quercetin (QC) in tetrahydrofuran at an optimized epoxy/hydroxy ratio 1/1.2, the obtained SPE/QC solution was mixed with wood flour (WF), prepolymerized at 150°C, and subsequently compressed at 170°C for 3 h to give SPE‐QC/WF biocomposites (WF content:0, 20, 30, 40 wt %). The tan δ peak temperature of SPE‐QC without WF (85.5°C) was higher than that of SPE cured with conventional phenol novolac (81.0°C). In addition, diglycidyl ether of bisphenol A cured with QC had a higher tan δ peak temperature (145.1°C) than that cured with PN (90.8°C). The tan δ peak temperatures (106–113°C) of SPE‐QC/WF biocomposites were significantly higher than that of SPE‐QC. The tensile modulus of SPE‐QC/WF biocomposites increased with increasing WF content. A lower wavenumber shift of carbonyl stretching absorption peak in the FTIR spectrum of SPE‐QC/WF as compared with that of SPE‐QC suggested that hydroxy group of woody component forms hydrogen bonding with carbonyl group of quercetin moiety. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
This study investigated the utilization of resin impregnated decorative and overlay paper wastes obtained from the edge trimming of partially cured, dried papers as a binder in the manufacture of the light medium density fiberboard (MDF). The light MDF panels were prepared from various mixtures of the softwood fiber and hammer-milled impregnated paper waste, 95/5, 90/10, and 80/20 wt%. The results of the experiments showed that the dimensional stability and mechanical properties of the light MDF panels were improved by adding hammer-milled melamine impregnated paper waste. The resin impregnated paper waste could be evaluated as a binder for the manufacturing of the light MDF panels having better dimensional stability and mechanical properties than standard light MDF panels used in interior applications.  相似文献   

13.
A series of novel poly(arylene ether)s with crosslinked groups and different azobenzene chromophores contents (azo-CPAEs: PAE-allyl20%-azo20%, PAE-allyl20%-azo40%, PAE-allyl20%-azo60%) were synthesized from a new bisfluoro monomer, (2,6-difluorophenyl)-(4-hydroxyphenyl)methanone. Their chemical structures were characterized by means of UV-vis and FI-IR. The thermal properties of the polymers were investigated by TGA and DSC, indicating the polymers had high glass transition temperatures (Tg > 147 °C) and good thermal stability (Td5 > 360 °C) even when the contents of azobenzene chromophores was high to 60%. And the influence of thermal crosslinking on the performance of PAE-allyl20%-azo20%, a typical one of the series, was investigated. Tg of PAE-allyl20%-azo20% increased with the increase of heating time when heat-treated at 250 °C for 20, 40 and 60 min, indicating the crosslink degree of the polymer increased. After heat-treated for 60 min, Tg of PAE-allyl20%-azo20% increased to 175 °C from 147 °C before thermal crosslinking. Upon irradiation with a 532 nm neodymium doped yttrium aluminum garnet (Nd:YAG) laser beam, the remnant value of the polymer PAE-allyl20%-azo20% before and after the thermal crosslinking were 81 and 96%, respectively, meaning that the PAE-allyl20%-azo20% after thermal crosslink showed more stable photoinduced alignment than that before thermal crosslinking.  相似文献   

14.
As part of a research program to expand the potential of wood products in exterior applications, lodgepole pine wood was impregnated with a solution of glycerol and citric acid to improve its dimensional stability and other relevant properties. Two catalysts were studied: one liquid (hydrochloric acid, HCl) and one solid (nanoclay, Cloisite 30B). After impregnation, the specimens were polymerized at two temperatures (160°C and 180°C). The nanoclay dispersion and reticulation analysis were performed by XRD and TEM methods. Other analysis methods such as SEM, DSC, TGA, FT-IR were used to characterize the treatment solutions, polymers and treated specimens. The dimensional stability, hardness, adhesion strength and roughness of the specimens were measured and analyzed. Cloisite 30B proved to be a good catalyst, as it contributed to improving the dimensional stability and hardness of the wood while outperforming the HCl catalyst in counteracting the adhesion strength loss attributed to the wood-polymer composite. The polymerization temperature also affected the results. At 180°C, dimensional stability and adhesion strength were higher than at 160°C and the loss of treatment solution was also higher. Impregnating wood with a glycerol ester could drastically improve its physical properties, including dimensional stability and hardness, particularly when Cloisite 30B nanoclay is used as a catalyst.  相似文献   

15.
This paper is concerned with the cross-linking of poly(vinyl alcohol) (PVA) using maleic acid as the cross-linker. The curative (maleic acid) dose and the curing temperature and time were varied between 2.5 and 60% (w/w), 120 and 160 °C and 30 and 120 min, respectively. From a thorough swelling study in both hot and cold water (percentage swelling, gel content, swelling ratio, etc-) the optimum curative dose and curing conditions have been evaluated. The molecular weight between the cross-links exhibited a sharp fall up to a maleic acid dose of 20% (w/w). A comparative evaluation of maleic acid cross-linked and heat-treated PVA films has been done. Better heat stability for maleic acid cross-linked PVA was observed from thermogravimetric analysis. A shift in glass transition temperature was observed for both heat-treated and maleic acid treated PVA compared with the virgin one. IR spectroscopic study indicated the presence of an ester linkage and an olefinic double bond in maleic acid treated and heat-treated PVA films, respectively. Maleic acid cross-linked PVA is quite stable in different polar and nonpolar solvents. A definite structural pattern has been observed in maleic acid cross-linked PVA films through scanning electron microscopy.  相似文献   

16.
Heat treatment is a well-known method for modifying wood that is applied in different ways, and treatment schedules change from tree to tree. This treatment improves the physical properties of wood but, in general, it reduces the mechanical properties of wood. The effects of heat treatment on the mechanical properties of juvenile and mature wood of the same tree species have not been well-defined. Therefore, we focused our study on the differences in the mechanical properties of juvenile wood and mature wood of Eucalyptus grandis after both were subjected to heat treatment. Wood samples were treated at temperatures of 120, 150, and 180°C for 4, 6, and 8 h. The test results showed that decreases in the mechanical properties of juvenile wood (e.g., modulus of elasticity (MOE), modulus of rupture (MOR), compression strength (CS), and impact bending (IB)) were greater than the decreases that occurred in mature wood that was heat treated at the same conditions.  相似文献   

17.
Epoxy resins cured with diethylenetriamine (37%–103% of stoichiometric composition) were heat treated at 120°C, and the dynamic elastic modulus and internal friction of the specimens were measured over the range of 85°–300°K. Results indicate that heat treatment causes the dynamic modulus to decrease at 85°K and at room temperature, but to increase over the region 150°–200°K. The γ- (~150°K) and β-(~250°K) peaks merge into a single broad peak with heat treatment, and a β′-peak is observed in the heat-treated samples. Effects of heat treatment also depend upon the amount of diethylene-triamine used.  相似文献   

18.
Dimensional stability, mechanical properties, and melting and crystallization behavior of polypropylene composites filled with sunflower seed cake (SSC) were investigated. Injection molded composites were prepared from the SSC flour and polypropylene with and without maleic anhydride‐grafted polypropylene (MAPP) at 30, 40, 50, and 60 wt % contents of the SSC flour. Twenty‐eight days thickness swelling and water absorption values of the specimens increased by 43 and 56% as the filler content increased from 30 to 60 wt %, respectively. The flexural modulus of the polypropylene composites increased from 3157 to 4363 MPa as the SSC flour increased from 30 to 60 wt %. The maximum flexural strength 38.4 MPa was observed for 40 wt % SSC flour filled specimens. However, further increment in the SCC flour decreased the flexural strength to 31.4 MPa. The tensile strength of the specimens decreased from 22.5 to 14 MPa while the tensile modulus increased from 3023 to 3677 MPa as the SSC flour increased from 30 to 60 wt %. The dimensional stability and mechanical properties of the composites were significantly improved by the incorporation of the coupling agent (MAPP). The effect of the MAPP addition was more pronounced for the strength than for the modulus. The melting temperature and degree of crystallinity of the neat polypropylene decreased with increasing content of the SSC flour. The degree of crystallinity of filled composites considerably increased with the incorporation of the MAPP. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
The wood powder of Cryptomeria japonica (Japanese cedar) was liquefied in phenol, with H2SO4 and HCl as a catalyst. The liquefied wood was used to prepare the liquefied wood‐based novolak phenol formaldehyde (PF) resins by reacting with formalin. Furthermore, novolak PF resins were mixed with wood flour, hexamethylenetetramine, zinc stearate as filler, curing agent, and lubricating agent, respectively, and hot‐pressed under 180 or 200°C for 5 or 10 min to manufacture moldings. The results showed that physicomechanical properties of moldings were influenced by the hot‐pressing condition. The molding made with hot‐pressing temperature of 200°C for 10 min had a higher curing degree, dimensional stability, and internal bonding strength. The thermal analysis indicated that using a hot‐pressing temperature of 180°C was not sufficient for the liquefied wood‐based novolak PF resins to completely cure. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
The present study was carried out to investigate the effect of material ‐ blending method and filler content on the physical and mechanical properties of medium density fiberboard (MDF) dust/PP composites. In the sample tests preparation, 40, 50, and 60 wt % of MDF dust were used as lignocellulosic material. Test samples were made to measure the influence of material ‐ blending method and MDF dust content on water absorption (WA), thickness swelling (TS), modulus of elasticity (MOE), modulus of rupture (MOR), tensile strength, tensile modulus, and withdrawal strengths of fasteners. The mechanical properties of the test panels significantly decreased with increasing MDF dust contents due to the reduction of interface bond between the fiber and polymer matrix. The WA and TS values also increased by increasing the amount of MDF dust. So with the increase in the MDF dust content, there are more water residence (high hydroxyl groups (? OH) of cellulose and hemicelluloses) sites, thus more water is absorbed, so it can reduce mechanical strength. Furthermore, the results indicated that the physical and mechanical properties of samples made with melt ‐ blend method were more acceptable than those of dry ‐ blend method. Field emission scanning electron microscopy micrographs also showed that the polymer and the filler phase mixed better in the melt ‐ blend method. On the basis of the findings of this research, it appears evident that certain amount of MDF dust material with suitable material ‐ blending method can be used in manufacturing of wood–plastic composites for providing good physical and mechanical properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40513.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号