首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jet tube fluidized bed drying was investigated as a means of rapidly generating shelf-stable and high-quality sweetened and nonsweetened blueberries. Sugar-infused and noninfused scarified Rabbiteye blueberries (Vaccinium ashei ‘Brightwell’) were dried at 99, 107, and 116°C. Prior scarification of the blueberry surface aided in decreasing the drying time. Increased lightness (L*) values were most notable at higher drying temperatures for sugar-infused blueberries, suggesting loss of pigments. Total monomeric anthocyanins level, initially 7.65 mg cyanidin-3-O-glucoside equivalents (C3G eq)/g extract, decreased as drying temperature increased and ranged between 4.07 down to 1.51 mg C3G eq/g extract for dried blueberries. The total phenolics content increased with drying for noninfused blueberries, with highest levels of 31.6 mg gallic acid equivalents (GAE)/g extract for samples dried at 107°C. With the exception of sugar-infused berries dried at 107 and 116°C, the dried blueberries maintained or demonstrated slightly increased hydrophilic oxygen radical absorbance capacity (H-ORACFL) values, indicating that their antioxidant capacity was retained upon drying. Blueberries dried at 107°C possessed the greatest preference scores and best retention of blueberry flavor and required a relatively short drying time.  相似文献   

2.
This study aimed to develop a suitable drying model for microwave vibro-fluidized bed drying in a single-mode applicator (MVFB-SMA drying) of cooked rice with and without prefreezing treatment and to investigate the effects of prefreezing treatment and drying temperature (110–185°C) on quality of dried cooked rice. During the process of drying cooked rice from 60 to 10% (wet basis), results indicated that drying rate increased, whereas drying time decreased with prefreezing treatment and increased drying temperature. The drying rate and drying time of unfrozen and frozen cooked rice ranged from 0.196 to 0.497 g water/g dry matter/min and 0.228 to 0.554 g water/g dry matter/min; and from 7 to 2.5 min and 5.5 to 2 min, respectively. A new model was proposed in this study (MR = exp(?k t n ) + bt + c) to compare with 11 commonly used drying models. The new model describes the MVFB-SMA drying data most satisfactorily. The values of effective diffusivity were between 1.70 × 10?7 and 5.72 × 10?7 m2/s for the unfrozen sample and between 1.99 × 10?7 and 5.86 × 10?7 m2/s for the frozen sample. Their activation energy values were 23.66 and 21.19 kJ/mol, respectively. Prefreezing treatment provided a whiter product with a less uniform porous structure and higher bulk density. Slower ability to rehydrate was also observed for the frozen cooked rice dried at 160 and 185°C. An increase in drying temperature resulted in changes in whiteness, microstructure, bulk density, and rehydration capability. No prefreezing treatment and drying at 160°C seemed to be the optimal process condition for cooked rice, ensuring whiteness, a porous structure, low bulk density, and high rehydration capability.  相似文献   

3.
The purpose of the present study was to investigate the effect of different drying methods on the rheological and textural properties and color changes in Balangu seed gum. Three drying methods, including air drying (40–80°C), freeze drying, and vacuum drying, were used. The apparent viscosity decreased from 0.161 to 0.056 Pa s with increasing temperature from 40 to 80°C (shear rate = 60 s?1) and freeze-dried gum exhibited the highest viscosity among all dried gums (0.203 Pa s). Different time-independent rheological models (power law, Bingham, Herschel-Bulkley, Casson, and Vocadlo) were used to fit the experimental data and the results revealed that the Herschel-Bulkley model was the most suitable to describe the flow behavior of Balangu seed gum over the whole experimental range (r > 0.98). The hardness values of air dried Balangu seed gum gels varied from 33.1 to 40.4 g and were significantly lower compared to the freeze-dried and vacuum-dried gums (46.9 and 46.6, respectively). The consistency of samples decreased from 386.27 to 245.33 g · s when the drying air temperature increased from 40 to 80°C. The results indicated that the freeze-dried gum exhibited the highest hardness and consistency. The color of air-dried gum was darker (lower L* value) compared to the freeze- and vacuum-dried samples.  相似文献   

4.
《Drying Technology》2013,31(7):1369-1381
Abstract

Freshly harvested rosehips (Rosa canina L.) were dehydrated in a parallel flow type air dryer at six air temperatures (30, 40, 50, 60, and 70°C) at air velocities of 0.5, 1.0, and 1.5 m/s. Drying air temperature and velocity significantly influenced drying time and energy requirement. Minimum and maximum energy requirement for drying of rosehips were determined as 6.69 kWh/kg for 70°C at 0.5 m/s, and 42.46 kWh/kg for 50°C, 1.5 m/s. In order to reduce drying energy consumption, it is recommended that the drying air velocity must not be more than 0.5 m/s and drying air temperature should be 70°C. In addition, the influence of drying air temperature and air velocity on the color of dried rosehip has been studied. Hunter L, a, b values were used to evaluate changes in the total color difference (ΔE) on dried rosehips. 70°C drying air temperature and 1 m/s air velocity were found to yield better quality product.  相似文献   

5.
The effect of superheated steam (SS) drying and hot air (HA) drying on drying kinetics and changes in the color, crude protein, and amino acid concentrations (in particular, lysine content) of corn/wheat wet distillers grains (WDG) and centrifuged solubles (CS) was evaluated. An inversion temperature was reached at 139°C for WDG and 132°C for CS, above which moisture evaporation rate and qualitative changes under SS drying conditions exceeded the values noted in HA, and below which the reverse was observed. A significant decrease (from 8 to 50%) in the lysine content of WDG and CS was reported during SS and HA. The overall changes in the color (ΔE*) of corn/wheat WDG and CS ranged from 7.9 ± 2.6 to 27.2 ± 1.9 during SS drying and from 11.9 ± 3.7 to 32.0 ± 0.5 during HA drying. The observed deterioration in color was attributed mainly to changes in lightness (L*) and yellowness (b*) of dried samples. The values of L* and b* were reliable predictors of the lysine content of corn/wheat distillers co-products.  相似文献   

6.
The study investigates the effect of drying temperature on vitamin D2 content and color changes of UVB-treated shiitake (Lentinula edodes), oyster (Pleurotus ostreatus), and white and brown button mushrooms (Agaricus bisporus). Fresh samples were UVB treated up to 1.5?J/cm2 for 20?min at 25°C and either dried in a high precision dryer (temperatures: 40, 60, 80°C, specific humidity: 10?g/kg, air velocity: 0.6?m/s) or frozen at ?25°C, and then freeze-dried (pressure: 0.28?mbar). Vitamin D2 content was not negatively affected by the increased temperatures of the drying air. The highest content of vitamin D2 was detected in freeze-dried (171.84?µg/g) and hot-air dried shiitake at 60°C (169?µg/g), followed by oyster (121.96?µg/g), whereas the lowest amount was observed in brown button mushrooms at 40°C (34.65?µg/g). Although vitamin D2 indicated a remarkable stability even at 80°C, the dried samples were characterized by intensive tissue darkening.  相似文献   

7.
The fluidized bed drying process of green peas was optimized using the response surface methodology for the process variables: drying air temperature (60–100°C), tempering time (0–60 min), pretreatment, and mass per unit area (6.3–9.5 g/cm2). The green peas were pretreated by pricking, hot water blanching, or chemical blanching. Product quality parameters such as rehydration ratio, color, texture, and appearance were determined and analyzed. Second-order polynomial equations, containing all the process variables, were used to model the measured process and product qualities. Rehydration ratio was influenced mostly by pretreatment followed by tempering time, temperature, and mass per unit area. Pretreatment and mass per unit area significantly affected color and texture. Higher levels of temperature and lower levels of tempering time and mass per unit area increased the rehydration ratio. The optimum process conditions were derived by using the contour plots on the rehydration ratio and sensory scores generated by the second-order polynomials. Optimum conditions of 79.4°C drying air temperature, 35.8-min tempering time, pretreatment of the once pricked peas with chemical blanching in a solution of 2.5% NaCl and 0.1% NaHCO3, and mass per unit area of 6.8 g/cm2 were recommended for the fluidized bed drying of green peas. At these conditions the rehydration ratio was 3.49.  相似文献   

8.
Electrohydrodynamic (EHD) drying is a novel method of nonthermal drying. A corona discharge using multiple electrodes and a high-voltage electric field of 5.2 kV · cm?1 was produced to investigate the drying enhancement of carrot slices and its effect on color and shrinkage. The EHD setup consisted of 13 stainless steel needle points connected to a DC power supply and a stainless steel plate. EHD+ drying, EHD? drying, oven drying at 55°C, and ambient air drying control at 25°C for 5 h resulted in 79.5, 77.7, 77, and 22.5% total moisture removal from the fresh carrot slices, respectively. The final shrinkage of the EHD± drying was less than that of oven drying but was higher than that of ambient air drying. It was estimated that the energy consumption of oven drying was several times greater than those of EHD± drying. The conventional drying processes changed all color parameters, whereas the color for EHD± dried samples remained almost the same. The carrot slices’ temperature during drying by EHD± was significantly less than that of those dried by oven and ambient air drying.  相似文献   

9.
In this study, after production by recombinant Bacillus subtilis (BGSC-1A751), carrying pHV1431::subc gene in the complex medium and separation of solids from the fermentation broth, serine alkaline protease (SAP) was dried in order to investigate the stabilization during spray drying and subsequent storage. The effect of air inlet temperature of the spray dryer between T = 70 and 130°C and the effect of protective additives, glucose and maltodextrin, at 0–2% (w/v) on SAP activity during spray drying and storage stability of obtained SAP powders at 4°C for a long period (6 months) were evaluated. Increasing drying air inlet temperature generally resulted in an increase in activity loss; moreover, higher absorbance peaks observed at wave number 1061 cm?1 of the IR spectrums when drying temperature is increased indicates the structural change in the SAP molecule. In most cases presence of additives provided higher activities both after drying and during storage period compared to no additive case. Drying the enzyme with 1% (w/v) glucose at T = 110°C resulted in the highest enzyme activity after drying and storage processes.  相似文献   

10.

The aim of this work was to optimize the drying process of vegetal pear and minimize energy resources (cost) under prefixed limits involving vegetal pear moisture, color, and productivity. The optimization of vegetal pear drying was made by using response surface methodology (RSM) for minimum process cost and color difference between fresh and dried samples (moisture ≤0.10 g water g d.m.?1). A pilot-plant dryer was used for dehydrating vegetal pear slices (0.5 cm thickness). The tests were carried out at different air temperature (60 to 70°C), samples diameter (4 to 7 cm), and pretreatment with ascorbic acid solutions (0–0.1% w/w). The optimum drying conditions were found at air temperature of 63°C with 5-cm sample diameter and 0.075% of ascorbic acid concentration. On the optimized drying conditions, dried vegetal pear presented values with moisture content of 0.052 g water g d.m.?1, color difference of 11.65, production rate of 0.0073 kg h?1, and total cost of $30.58/kg dried product?1  相似文献   

11.
Thompson seedless grapes (Vitis vinifera) were pretreated in potassium carbonate and ethyl oleate solutions for 1, 2, and 3 min at 30, 40, 50, and 60°C and dried in a convective air dryer at 60°C. The effect of dipping time and solution temperature on drying rate and color kinetics were investigated. Grapes dipped into the solution at 60°C for 2 and 3 min had the fastest drying rate. Among the seven semi theoretical models compared, the Midilli equation best described the drying curves of grapes for all dipping pretreatments. Color data were obtained using a machine vision system in CIE L*a*b* color space. Regardless of the dipping time and temperature applied, all raisins had varying degrees of brown coloring. At all dipping times and temperatures the highest R 2 value was obtained for a* values, which followed zero-order reaction kinetics during drying.  相似文献   

12.
Computer-vision system (CVS) for control of a drying process with a portable CCD camera with IEEE-1396 interface and configurable software LabView 7.0 and IMAQTM 6.1 was developed. An object area was continuously monitored through the CVS by extracting the green plane from the RGB color space followed by thresholding and pixel counting. An object color was continuously monitored through the CVS as color intensity in the hue-saturation-intensity (HSI) color space. The observability of a drying process was provided due to online image analysis and correlation of image attributes (area, color, texture) with physical parameters of drying (moisture, quality). A relationship between area shrinkage and moisture content was used for online estimation of actual moisture content. A relationship between color intensity and quality was used for online estimation of quality degradation.

Experimental study of the CVS for ginseng drying showed advantages of computer-vision for online monitoring of important state variables, such as moisture content and material quality. Color measurements demonstrated high sensitivity of quality to drying conditions: drying at 50°C resulted in significant color changes and unacceptable quality degradation. The quality of roots in three-stage (38-50-38°C) drying process was compatible with recommended isothermal (38°C) drying due to significant (30–40%) reduction of drying time. This control strategy was used in a pilot batch dryer for temperature control with respect to quality. Testing of a pilot dryer with embedded CVS proved stability and robustness of control strategy, combined with high accuracy in the estimation of moisture content (8–14% of error with 95% confidence). The composite moisture measurements at the endpoint demonstrated uniform drying of root mixture to target moisture content 0.1 g/g (db) with minor variations between individual roots in the range of 0.07–0.12 g/g.  相似文献   

13.
Lemon myrtle plant (Backhousia citriodora) leaves were dried at three different drying temperature conditions (30, 40, and 50°C) in a fluidized bed dryer. The retention of the principal volatile compound, citral, was analyzed in dried products obtained at these three drying conditions. The changes in the color parameters L?, a?, b? of leaves were also analyzed. More than 90% of citral was retained at 50°C drying temperature, whereas the retention at 30 and 40°C was 81 and 85%, respectively, suggesting that higher temperature is beneficial to achieve higher retention of volatiles. However, in terms of the color, all the color parameters were changed maximum at 50°C drying temperature unfavorably, suggesting that the higher temperature drying causes more degradation of the pigment. Blanching of the leaves in hot water at 80°C for 1 min prior to drying did not result in any improvement in volatile retention or color.  相似文献   

14.
In this paper, we reported the experimental results about the effect of the thermal treatment on microstructure and physical properties of low-density and high transparent silica aerogels. From our results, with tetramethyl orthosilicate as precursor and via acetonitrile supercritical drying process, silica aerogel monolith was obtained possessing the properties as low-density (0.018 g/cm3), high surface area (923 m2/g), high optical transparency (87.9 %, 800 nm). It should be noted that high transparency of silica aerogel can be maintained up to 600 °C (91.5 %, 800 nm). The mechanical properties of silica aerogel decreased with increasing heat treated temperature to 600 °C, and silica aerogels still maintained crack-free monoliths completely and possessed high homogeneous density even after 600 °C thermal treatment. Furthermore, thermal conductivity of the monoliths at desired temperatures was analyzed by the transient plane heat source method. When the temperature flowed from 25 to 600 °C, thermal conductivity coefficients of silica aerogels changed from 0.021 to 0.065 W (m K)?1, revealed an excellent heat insulation effect in high-temperature area. Currently, the specific process developed for low-density aerogels affected by thermal treatment has not been reported in previous literature.  相似文献   

15.
The aim of the work was to develop an optimized routine for apple drying. The interaction of the drying parameters air temperature (35–85°C), dew point temperature (5–30°C), and air velocity (2.0–4.8 m/s) with drying time, color changes, and shrinkage was determined. Non-invasive online measurement techniques in the form of artificial vision systems in visible and infrared spectrum were developed and applied to guarantee an uninterrupted process. Quantification methods for the determination of color and shape changes of apple slices were established based on the images taken.

Results show that digital images are a feasible alternative for the monitoring of the relative changes in L* (R2 = 0.92, p < 0.001), a* (R2 = 0.96, p < 0.001), and b* (R2 = 0.96, p < 0.001) during the drying of apples. It was observed that the color parameters as a function of moisture content follow a third-order development while shrinkage was linear (p < 0.001). The developed models for drying time tdr (R2 = 0.99, p < 0.001), Total Color Difference ΔE (R2 = 0.95, p < 0.001), and shrinkage S (R2 = 0.68, p < 0.05) illustrate high interdependencies of the factors involved for the quality criteria studied. Throughout the parameter space investigated, increasing air velocity was shown to have a positive effect on the quality criteria investigated.  相似文献   

16.
In this study, foaming conditions of shrimp (Penaeus indicus) were optimized using response surface methodology (RSM) and the effect of drying temperature on drying behavior was investigated. The experiments were conducted according to face-centered central composite design for three independent variables: xanthan gum concentration (0.1–0.4% w/w), whipping time (2–6 min), and water : shrimp ratio (2:1–6:1 w/w) to minimize the foam density (FD) and the drainage volume (DV) as responses. Statistical analysis of results showed that linear terms of the models were significant (p < 0.01) except the linear term of whipping time in DV. Xanthan gum concentration 0.19% (w/w), water : shrimp ratio 4.5:1 (w/w), and whipping time 5.89 min were found to be the optimum foaming conditions. The effect of different drying temperatures (45, 60, 75, and 90°C) on drying behavior of optimized foam was then evaluated. The drying air temperature had a considerable effect on drying time and drying rate. As the temperature increased from 45 to 90°C, the drying time decreased to 90 min. Drying rate curves showed that foam-mat drying of shrimp principally occurred in the constant rate period. Different mathematical models were tested with the drying behavior of shrimp foam in the dryer. According to the results, the Weibull distribution model is superior to the other models for explaining the drying behavior. Effective moisture diffusivity was calculated and was between 1.114 × 10?8 and 3.951 × 10?8 m2/s within the studied temperature range. An Arrhenius relation with an activation energy value of 26.89 kJ/mol expressed the effect of temperature on diffusivity.  相似文献   

17.
In this study, production of pomegranate juice powder using a spray dryer was investigated. To prevent stickiness, maltodextrin dextrose equivalent 6 (DE6) was used as a drying agent. While feed flow rate, feed temperature, and air flow rate were kept constant, air inlet temperature (110–140°C), percentage maltodextrin (MD; maltodextrin dry solids/100 g feed mixture dry solids; 39.08–64.12%), and feed mixture concentration (19.61–44.11 °Brix) were chosen as the independent variables. Product properties investigated included moisture content, hygroscopicity, anthocyanin content, color change, solubility, bulk density, total phenolics content, antioxidant capacity, and sensory properties. The products were produced with high yield (86%) and high antioxidant activity (77%). MD and drying temperature were found to be the most important variables in production of pomegranate juice powders. Because total color change (ΔE), bulk density, antioxidant capacity, and powder yield were affected strongly by the independent variables, these parameters were used in optimization of the process. The optimum temperature, feed mixture concentration, and percentage maltodextrin were 100°C, 30.8 °Brix, and 53.5% MD, respectively. This study revealed that by applying these optimal conditions, pomegranate juice powder with a 55% dry solids yield, 9.78 total color change, 0.35 g/mL bulk density, and 57.8% antioxidant capacity were produced.  相似文献   

18.
A series of new porous aromatic frameworks (PAA-VTMS) co-cured by diethynylbenzene (DEB) and vinyltrimethoxysilane (VTMS) have been described. Thermally treated PAA-VTMS were also investigated. When the ratio of DEB to VTMS was 1:1 (PAA-VTMS-4), it showed characteristic pores with uniform diameter, confirmed by scanning electron microscope (SEM) and transmission electron microscopy (TEM) analyses. The surface area of PAA-VTMS-4 was up to 457 m2/g and its pore size was 7 nm, related to the hyper-cross-linked structure with plentiful benzene units. The co-cured PAA-VTMS samples whose DEB/VTMS ratios were higher or less than 1:1 showed low surface area. CO2 uptake of PAA-VTMS-4 was 83 cm3/g at 0 °C and 72 cm3/g at 25 °C. The temperature of 5% weight loss of PAA-VTMS-4 was 388 °C in nitrogen and 346 °C in air. The surface area of the thermally treated sample (OPAA-VTMS-4) was decreased, but its CO2 uptake was as high as 115 cm3/g at 0 °C and 105 cm3/g at 25 °C. The OPAA-VTMS-4 sample almost did not decompose in N2, and the temperature of its 5% weight loss was 450 °C in air. It showed that PAA-VTMS with its new porous aromatic framework can be used at high temperature.  相似文献   

19.
The CTE and the theoretical density are important properties for energetic materials. To obtain the CTE and the theoretical density of 1,3,5‐trinitro‐1,3,5‐triazacyclohexane (RDX), XRD, and Rietveld refinement are employed to estimate the dimensional changes, within the temperature range from 30 to 170 °C. The CTE of a, b, c axis and volume are obtained as 3.07×10−5 K−1, 8.28×10−5 K−1, 9.19×10−5 K−1, and 20.7×10−5 K−1, respectively. Calculated from the refined cell parameters, the theoretical density at the given temperature can be obtained. The theoretical density at 20 °C (1.7994 g cm−3) is in close match with the RDX single‐crystal density (1.7990 g cm−3) measured by density gradient method. It is suggested that the CTE measured by XRD could perfectly meet with the thermal expansion of RDX.  相似文献   

20.
Single-layer solar drying experiments were conducted for Mexican tea leaves (Chenopodium ambrosioides) grown in Marrakech. An indirect forced convection solar dryer was used in drying the Mexican tea leaves at different conditions such as ambient air temperature (21° to 35°C), drying air temperature (45° to 60°C) with relative humidity (29 to 53%), airflow rate (0.0277 to 0.0556 m 3/s), and solar radiation (150–920 W/m2). The experimental drying curves showed only a falling rate period. In order to select the suitable form of drying curves, 14 mathematical models were applied to the experimental data and compared according to their statistical parameters. The main factor in controlling the drying rate was found to be the temperature. The drying rate equation was determined empirically from the characteristic drying curve. The diffusion coefficient of the Chenopodium ambrosioides leaves was estimated and varied between 1.0209 × 10?9 and 1.0440 × 10?8 m 2·s?1.The activation energy was found to be 89.1486 kJ·mol?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号