首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Drying Technology》2013,31(3-4):583-597
In this study, a solar cabinet dryer consisting of a solar air heater and a drying cabinet, was used in drying experiments. Pumpkin, green pepper, stuffed pepper, green bean, and onion were dried in thin layers. Three different drying air velocities were applied to the process of drying to determine their effects on drying time. Fresh materials were dried by a natural sun drying method. In order to explain drying curves of these products different moisture ratio models were performed and evaluated based on their determination coefficients (R2). Our results revealed that drying air temperature could increase up to about 46°C. Drying air velocity had an important effect on drying process. Drying time changed between 30.29 and 90.43 hours for different vegetables by the solar drying. This drying time was between 48.59 and 121.81 hours for the natural sun drying. Drying curves could be explained by determined thin layer drying models satisfactorily with very high determination coeffcients.  相似文献   

2.
ABSTRACT

Drying kinetic curves and modelling for cassava chips were determined using a pilot-size air dryer. Operating conditions involved temperatures ranging from 35 to 90 ° C, air flow velocities from 0.5 to 2.0 m/ s, and air moisture content from 0.005 to 0.060 kg water/ kg dry air. Sorption isotherms at temperatures of 23, 45 and 60 ° C were obtained. Results for the drying experiments can be used to calculate the optimal drying conditions for dehydration of cassava roots in multilayers  相似文献   

3.
《Drying Technology》2013,31(8):1673-1689
ABSTRACT

The performance and operating characteristics of a low temperature re-circulating cabinet dryer using a dehumidifier loop were studied using alfalfa. Chopped alfalfa, initially at 70% moisture content, was dried to 10% moisture content in the dryer. Two dryer setups were used. The dryers in each case had a partitioned cabinet with trays of material on one side and a stack of one or two small household dehumidifiers on the other side. Air was re-circulated through the material from bottom to the top and back through the dehumidifiers. Two drying configurations were tested. In one, the material was left on the trays until drying was complete (batch or fixed tray drying). In the other configuration, the trays were moved from top to bottom, introducing a new tray at the top while removing an old tray from bottom. Drying air temperature ranged from 25 to 45°C. The average air velocity through the material was 0.38 m/s. Alfalfa chops dried in 5 h in the fixed tray drying and in 4 h in the moving tray drying. The specific moisture extraction rate ranged from 0.35 to 1.02 kg/kWh for batch drying and stayed at an average value of 0.50 kg/kWh for continuous/moving tray drying.  相似文献   

4.
《Drying Technology》2013,31(4):759-778
Abstract

An innovative two-stage drying concept is presented in this article. The work considered drying of shrimp using a superheated steam dryer followed by a heat pump (SSD/HPD) or a hot air dryer (SSD/AD) both from drying kinetics and dried product quality points of view. The experiments were performed using the first-stage superheated steam drying temperature of 140°C while the second-stage heat pump drying (or hot air drying) was performed at 50°C. The moisture content of shrimp at the end of the superheated steam drying stage was varied between 30 and 40% (w.b.). The effect of tempering between SSD/HPD was also investigated. Shrinkage, color, rehydration behavior, texture (toughness and hardness), and microstructure of dried shrimp were measured. The results showed that SSD/HPD dried shrimp had much lower degree of shrinkage, higher degree of rehydration, better color, less tough and softer, and more porous than single-stage SSD dried shrimp. It was also found that SSD/AD gave redder shrimp compared to shrimp dried in a single-stage superheated steam dryer. No improvement in terms of shrinkage and rehydration behavior was observed, however.  相似文献   

5.
THIN LAYER SOLAR DRYING OF SOME VEGETABLES   总被引:15,自引:0,他引:15  
Osman Yaldý  z  Can Erteký  n 《Drying Technology》2001,19(3):583-597
In this study, a solar cabinet dryer consisting of a solar air heater and a drying cabinet, was used in drying experiments. Pumpkin, green pepper, stuffed pepper, green bean, and onion were dried in thin layers. Three different drying air velocities were applied to the process of drying to determine their effects on drying time. Fresh materials were dried by a natural sun drying method. In order to explain drying curves of these products different moisture ratio models were performed and evaluated based on their determination coefficients (R2). Our results revealed that drying air temperature could increase up to about 46°C. Drying air velocity had an important effect on drying process. Drying time changed between 30.29 and 90.43 hours for different vegetables by the solar drying. This drying time was between 48.59 and 121.81 hours for the natural sun drying. Drying curves could be explained by determined thin layer drying models satisfactorily with very high determination coeffcients.  相似文献   

6.
Recently, the interest in olive leaf has increased due to its high phenolic content. It has a high potential for industrial exploitation in food industry and the main process in olive leaf treatment is drying. Drying affects the product quality and is an energy-intensive process, so the use of heat pumps in drying processes that have low operating cost has attracted the attention of the investigators. In this study, response surface methodology was used to optimize operating conditions of drying of olive leaves in a pilot-scale heat pump conveyor dryer. The independent variables were air temperature, air velocity, and process time, and the responses were total phenolic content and antioxidant activity loss, final moisture content, and exergetic efficiency. Optimum operating conditions were found to be temperature of 53.43°C, air velocity of 0.64 m/s, process time of 288.32 min. At this optimum point, total phenolic content loss, total antioxidant activity loss, final moisture content, and exergetic efficiency were found to be 9.77%, 44.25%, 6.0% (w.b.), and 69.55%, respectively.  相似文献   

7.
Kinetics of hot air drying and heat pump drying were studied by performing various drying trials on salak slices. Isothermal drying trials were conducted in hot air drying and heat pump drying at a temperature range of 40–90°C and 26–37°C, respectively. Intermittent drying trials were carried out in heat pump drying with two different modes: periodic heat air flow supply and step-up air temperature. It was observed that the effects of relative humidity and air velocity on drying rate were significant when moisture content in salak slices was high, whereas the effects of temperature prevailed when the moisture content was low. As such, it was proposed that drying conditions should be manipulated according to the moisture transport mechanisms at different stages of drying in order to optimize the intermittent drying and improve the product quality. Generally, loss of ascorbic acid during drying was attributed to thermal degradation and enzymatic oxidation, whereas the loss of phenolic compounds was mainly due to thermal degradation. Experimental results showed that heat pump drying with low-temperature dehumidified air not only enhanced the drying kinetics but produced a stable final product. Heat pump–dried samples retained a high concentration of ascorbic acid and total phenolic compounds when an appropriate drying mode was selected.  相似文献   

8.
Convective hot air drying and freeze drying were investigated as potential dehydration processes to obtain powders of seabuckthorn fruit pulp. Halved seabuckthorn fruits were placed in a hot air dryer and dried at 1 m/s and at 50 or 60°C or freeze dried at less than 30 mTorr and at 20 or 50°C shelf plate temperature. An initial characterization of the seabuckthorn pulp (moisture, pH, soluble solid content, vitamins C and E, total phenolics, and carotenoids) was performed. Water loss, total phenolic compounds, total carotenoids, and vitamin C were determined at different processing times. Vitamin E was determined before and at the end of drying.

Freeze-drying kinetics were faster than air drying, probably due to lower moisture diffusion in the compact, sugary, and oily structure of the air-dried tissue. The temperature had an important impact on hot air–drying and freeze-drying kinetics. Drying method and processing times affected the remaining phenolic, carotenoid, and vitamin contents of seabuckthorn berries. Freeze drying was revealed as a superior method to obtain seabuckthorn powders because of the lower residual moisture content, the ease of grinding, as well as the better nutritional retention.  相似文献   

9.
ABSTRACT

The influence of microwave power (0 to 8.0 W/g, dry basis) and hot air temperature (25°C to 95 °C) on drying rate and product temperature of diced apples (from 31 % to 5% moisture content, dry basis) in a laboratory microwave and spouted-bed combined dryer was investigated. Product temperature initially increased sharply to a plateau about 12 to 15°C above the spouted bed air temperature at a microwave input power 6.4 W/g. This temperature remained almost constant thereafter. Uniform microwave heating was achieved as evidenced by uniform product color and product temperature. Drying rates increased with increasing spouted-bed air temperature or microwave power level, But higher microwave power caused more darkening of the product. Drying of the diced apples in the microwave and spouted bed drying system exhibited two falling rates periods. The influence of air temperature on effective moisture diffusivity followed an Arrhenius type equation. The activation energies were 23.7 kJ/mol and 26.7 kJ/mol for the first and second falling rate periods, respectively.  相似文献   

10.
ABSTRACT

Green bell pepper dices were dehydrated at different dry bulb air temperatures (55°, 60°, 65°, 70° and 75°C) and relative humidities (15, 20, 25, 30, 35 and 40%). The effects of temperature and relative humidity (RH) on the drying rates and drying period of diced green bell peppers were determined. Drying rate curves were characterized by a short induction (heating) phase followed by a falling rate period. Near constant rate drying was observed only at 55°C at 15% RH and at 65°C (15% RH). Drying rates generally increased with increasing temperatures and decreasing RH. The effect of temperature on the drying rates became less pronounced with increasing RH Drying rate maxima at 70°C and RH of 15, 20 25 and 40% exceeded those at 75°C, possibly due to case-hardening.  相似文献   

11.
The effect of air temperature and pretreatments (KMS: citric acid) on drying kinetics of sweet potato slices was investigated. Drying experiments were performed in a tray dryer. In falling rate period, moisture transfer from sweet potato slices was described by applying the unsteady-state Fickian diffusion model, and the rate constant (k) were calculated. The effect of temperature on k could be interpreted according to Arrhenius law. Drying rate and therefore k values were found to be affected by pretreatments. Rehydration rates of dried sweet potato slices at 25, 40, 80°C were also determined and found to be independent of drying conditions and rehydration temperature. The ΔE value was found to be the highest for slices treated at 50°C with 0.5:1.0% KMS and citric acid.  相似文献   

12.
ABSTRACT

A mathematical model of a heat pump fruit dryer was developed to study the performance of heat pump dryers. Using the moisture content of papaya glace' drying, the refrigerant temperature at the evaporator and condenser and the performance, was verified. It was found that the simulated results using closed loop heat pump dryer were close to the experimental results. The criteria for evaluating the performance were specific moisture extraction rate and drying rate. The results showed that ambient conditions affected significantly on the performance of the open loop dryer and the partially closed loop dryer. Also, the fraction of evaporator bypass air affected markedly on the performance of all heat pump dryers. In addition, it was found that specific air flow rate and drying air temperature affected significantly the performance of all heat pump dryers.  相似文献   

13.
Drying is one of the easily accessible and the most widespread processing technologies that have been used since ancient times for preserving fruits. Drying is an energy-intensive and time-consuming process, so reducing energy demand is important. The main aim of this paper is to analyze the heat and mass transfer characteristics of product in the drying chamber and in addition to this, three-dimensional (3-D) computational fluid dynamic (CFD) simulation was performed. The analyses of heat and mass transfer were investigated theoretically and experimentally in infrared dryer (IRD). The dryer consists of air to air heat recovery unit and proportional temperature controller. Experiments were performed at 0.5 and 0.25?m/s air velocities and at 60 and 65°C apricot surface temperatures which were controlled by three thermocouples contacted on top side of the product. In order to use energy more effectively and improve the drying characteristics of apricot, analyses were performed under different drying conditions. Since the heat recovery unit has a key role in this system, the performance of this unit was investigated and recovered energy ratio was between 58 and 62%. The calculated moisture diffusivity values varied from 1.7?×?10?10 to 1.15?×?10?9 for apricot, and the highest value of average energy efficiency was obtained as 16.43% at 65°C temperature and 0.25?m/s air velocity. Theoretical and experimental results are in line with each other.  相似文献   

14.
In this study, the drying characteristics of sugar cubes have been investigated. Drying experiments with sugar cubes were conducted in a laboratory‐type tray dryer at temperatures ranging from 45 to 95 °C and different air velocities (0.43, 0.56, and 0.7 m/s). Drying rates increased with the increase in temperature and air velocity. At high temperatures, the moisture content of the solid reached equilibrium moisture value in short time periods. Experimental data were analyzed by using the analytical solution of the unsteady‐state diffusion equation to determine the effective diffusivity in sugar cubes.  相似文献   

15.
《Drying Technology》2013,31(8):1559-1577
ABSTRACT

The ability of heat pump dryer to produce controlled transient drying conditions, in terms of temperature, humidity and air velocity, has given it an edge over other drying systems. Exploiting this characteristic, we studied and compared the effect of different temperature-time profiles on the quality of agricultural products in a tunnel heat pump dryer capable of providing up to 14.6 kW of cooling capacity. The product quality refers to the color change of the products. Samples of banana and guava were dried in batches in a two-stage heat pump dryer. The effects of the starting temperature of a selected profile and the cycle time on both drying kinetics and product quality were studied. It was observed that by employing a step change in drying air temperature with the appropriate starting temperature and cycle time, it was possible to reduce significantly the drying time to reach the desired moisture content with improved product color.  相似文献   

16.
The performance and operating characteristics of a low temperature re-circulating cabinet dryer using a dehumidifier loop were studied using alfalfa. Chopped alfalfa, initially at 70% moisture content, was dried to 10% moisture content in the dryer. Two dryer setups were used. The dryers in each case had a partitioned cabinet with trays of material on one side and a stack of one or two small household dehumidifiers on the other side. Air was re-circulated through the material from bottom to the top and back through the dehumidifiers. Two drying configurations were tested. In one, the material was left on the trays until drying was complete (batch or fixed tray drying). In the other configuration, the trays were moved from top to bottom, introducing a new tray at the top while removing an old tray from bottom. Drying air temperature ranged from 25 to 45°C. The average air velocity through the material was 0.38 m/s. Alfalfa chops dried in 5 h in the fixed tray drying and in 4 h in the moving tray drying. The specific moisture extraction rate ranged from 0.35 to 1.02 kg/kWh for batch drying and stayed at an average value of 0.50 kg/kWh for continuous/moving tray drying.  相似文献   

17.
Abstract

Grape is one of the most popular fruits and various types of grape have been cultivated by more than 100 countries around the World. The wine and juice industry produces large quantities of by-product, called grape pomace (GP) as an industrial waste and it consists of skins, seeds, and stems. Various processes such as separation, pressing, drying, and milling are applied to benefit from its health effects. In this study, the seeded black GP Kalecik karas? (Vitis vinifera) was dried in an assisted closed cycle heat pump dryer (HPD) designed for high-moisture products to investigate the drying behaviors of GP. The effects of drying air temperature on bioactive properties and the drying characteristics of GP, and performance of system have discussed. Experiments were carried out at two different temperatures (45 and 50°C) and air velocity of 1.0 m/s. It was seen that increasing temperature decreased the drying time, coefficient of performance of whole system (COPws), and specific energy consumption (SEC). The average values of COPws for temperatures 45°C and 50°C were calculated as 3.28 and 3.10, respectively. The drying efficiencies (DE) at drying air temperature of 45°C and 50°C ranged from 2 to 12% and from 2 to 15%, respectively. Additionally, result of analysis has indicated that using a HPD at lower temperatures increases performance of system despite of higher energy input. Bioactive properties of dried samples at drying air temperature of 45°C are better than 50°C. The results show that drying the GP at low temperature is more suitable for product quality. For this reason, heat pump may be preferred. It shows that this drying system with higher capacities in the future can be recommended as an alternative technique in terms of energy usage, drying time, and performance of system.  相似文献   

18.
Corn, rice, and wheat seeds with an initial moisture content (IMC) of 20–25% wb were dried to moisture content below 18% wb at 40–80°C in a fluidized bed dryer (FBD) and spouted bed dryer (SBD) and the seeds with IMC 18% wb were dried to below 14% wb at air temperatures 18–30°C and relative humidity 60–70% by an in-store dryer (ISD). As a result, it appears that a two-stage drying concept is feasible in drying high-moisture-content seeds due to the high germination rate of dried seeds. Nonetheless, the drying temperature must be carefully selected. A drying temperature of 40°C was clearly safe for all samples, whereas more than 90% of wheat seeds still germinated after drying at 60°C in FBD. Furthermore, drying seeds with IMC 18% wb by ISD was safe under specified drying conditions.  相似文献   

19.
This article deals with the exergy analysis and evaluation of broccoli in three different drying systems. The effects of drying air temperature on the exergy destruction, exergy efficiency, and exergetic improvement potential of the drying process were investigated. The exergy destruction rate for the drying chamber increased with the rise in the drying air temperature at 1.5 m/s, both in the tray and the heat pump dryer. The highest exergy efficiency value was obtained as 90.86% in the fluid bed dryer in comparison to the other two drying systems and the improvement potential rate was the highest in the heat pump dryer during drying of broccoli at the drying air temperature of 45°C and the drying air velocity of 1.0 m/s.  相似文献   

20.
A batch fluidized bed dryer was carried out for corn drying. Drying characteristics of corn were investigated The experimental results indicated that moisture transfer inside a corn kernel was controlled by internal diffusion by the following conditions : inlet hot air temperatures of 120 - 200 °C, superficial air velocities of 2.2- 4 m/s, bed depths of 4 - 12 cm, fraction of air recycled of 0.5 -0.9 and initial moisture content of corn of 43 % dry-basis. The Wang and Sing equation could describe in accordance with the results. Inlet hot air temperature and specific air flow rate were independent variables for drying constant model in the Wang and Singh equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号