首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A model for particle transport in a flighted horizontal rotary dryer is developed in this paper. Mathematical principles applied to the current study are in the areas of differential calculus and analytical geomentry. In contrast to the conventional approaches which are either based on mpirical/semi-empirical correlations or obtained from the investieation of single particle trajectories, this paper develops rigorous mathematical analysis of the transport of bulk solids. A variety of important issues in rotary drying, such as axial flowrate of solids, retention time distribution and solid holdup are addressed and treated by using non-traditional methods. Since the model takes dimension, number and geometry of flights into account, it possesses the following two haracteristics : (1) it is not only useful in the study of rotary drying dynamics, but lso applicable to other processes employing flighted rotating cylinders (such as granulation drumsand crushers) and (2) based on the model, an optimal drum configuration can be designed by using optimisation techniques. The model can be incorporated within a distributed arameter dryer model developed previously to form a more rigorous integrated dynamic model. A heoretical foundation for optimal flight design by using the current model is explained.

A pilot scale perspex rotary dryer equipped with a video camera has been constructed and used for model validation. Raw sugar was handled in the experiments. Particle transport was observed and measured by using a flow visualisation technique supplemented with traditional sampling methods. A significant model quality improvement has been observed through a comparative study between the newly developed model and conventional ones.  相似文献   

2.
ABSTRACT

An overall system model for a countercurrent rotary dryer has been developed with the ullimale aim of assessing controller pairings in these dryers. This model is based on heat and mass balances within dryer regions combined with two subsidiary models, one describing the equipment (which determines particle transport and heat transfer)and the other describing the behaviour of the material (the drying kinetics). Six partial differential equations have been set up to evaluate six state variables: solids moisture content, solids temperature, gas humidity, gas temperature, solids holdup and gas holdup as functions of time and rotary dryer length. A control-volume method has been used to reduce the six partial differential equations with respect to time and the length of the rotary dryer to six ordinary differential equations in time.

The drying model has been implemented in the SPEEDUP flowsheeting package (with FORTRAN subroutines) The model has been validated by fifteen experiments-in a pilot scale countercurrent-flow rotary dryer (0.2m in diameter and 2m in length)  相似文献   

3.
ABSTRACT

An investigation of the thermal drying of lignite has been carried out, by using an indirect heat pilot rotary drum. The process aims at the production of dry lignite and clean steam as part of a gasification procedure. Both flighted and bare drum modes have been employed. Temperature profiles along the dryer length, the amount of evaporation (moisture conversion) and the solids residence time distribution (RTD) were measured. A non-isothermal model was tested under three different regimes of solids flow. Model integration, by taking account of experimental amount of evaporation at dryer exit and temperature profiles along the dryer length, has been utilized in the validation of drying kinetics and heat transfer correlations. Model predictions compare satisfactorily with the operating data of an indirect heat industrial lignite dryer. Overall heat transfer coefficients of the pilot rotary dryer were found to agree well with those reported for direct heat dryers.  相似文献   

4.
ABSTRACT

Mathematical tools for studying panicle transpon in rotary drying and cooling processes are developed in this paper. In contrast to conventional approaches aimed at deriving empirical or xmi-empirical correlations, a rigorous mathematical analysis which employs dilferential calculus and analytical geometry is emphasis4 in the current research. These developments allow accurale computations of solid flowrate, retention time and particle holdup in rotary dryers with arbilrary flight configurations. Consequently, optimal dryer configuration design in terms of drum dimension, flight number and geometry can be achieved through a better understanding of the mathematical insight of rotary drum performance.

Techniques developed using this method are applied to the distributed parameter model eslablished earlier by the authors (Wang el al., 1993) to replace out-dated correlations for the determination of retention Lime and solid holdup. As a result of the new developments, the distributed parameter approach to the dynamics of rotary drying processes becomes more general and more reliable.  相似文献   

5.
ABSTRACT

A mathematical model able to predict solid and drying gas temperature and moisture content axial profiles along a direct contact rotary dryer was developed. The study was focused on the drying kinetics based on phenomenological models. Two different drying mechanisms in the decreasing drying rate period were tested: proponional to the unbound moisture content and moisture diffusion inside the particle. Experimental data collected in a pilot-scale direct contact rotary dryer was used to validate the model. Soya and fish meals were used as drying material.  相似文献   

6.
ABSTRACT

The solid particle movement in a rotary drum plays an important role in drying processes. The solid distribution in the drum affects the amount of contact surface between the solid and the gas. The retention time of solids influences the time particles can stay in contact with the gas in order to transfer heat and mass. Any heat and mass transfer model for a solid particle dryer must be able to predict solid flowrate and solid hold-up. There have been several reports in the literature regarding the modelling aspects of solid transport in dryers. If the model is developed for model-based control, it must be simple and yet represent dynamics of the system accurately. This paper addresses solid motion modelling and the effects of different variables involved in solid transport phenomena. Sugar drying process is the case study in this work. A steady state semi-empirical model was modified to predict solid hold-up and flowrate in rotary dryers. This model was incorporated into a heat and mass transfer model ;o predict solid moisture and temperature for inferential and model-based control purposes. Results of several experiments that have been used to investigate dynamics of the system in terms of solid motion and to validate the model are also presented. The approach advocated in this paper is directly applicable to the transport of other solids in rotary drum equipment and can thus be regarded as a generalized model.  相似文献   

7.
Abstract

Until now most of the design methods for cascading rotary dryers have been either empirical or purely theoretical. A theoretical model is presented which simulates the operation of both cocurrent and countercurrent rotary dryers. It relies on pilot plant and bench scale tests to determine the values of parameters which describe respectively the transport of solids through the dryer and the drying rate of the feedstock. A procedure is outlined for using the model to scale up from these pilot-plant and bench-scale tests to full-scale dryers.  相似文献   

8.
A physical description of solids transport in flighted rotary dryers   总被引:1,自引:0,他引:1  
In this paper, a solids transport model for flighted rotary dryers is presented. Emphasis is placed on combining statistical and mechanistic modelling efforts to create a physically motivated compartment model involving pairs of perfectly mixed tank reactors linked in a series arrangement. Here, each tank pair, or cell, aims to physically describe a finite slice of a case study industrial rotary sugar dryer, and is hence governed primarily by flight geometry and dryer operational variables such as rotational speed and dryer inclination. Solids flow paths are structured to properly represent the different modes of transport in the rotary dryer, and values of transport coefficients are based on calculated rates of rotational and axial flows. A solids dispersion variable is used to correlate the model residence time distribution (RTD) prediction with available data from a tracer study conducted during industrial operation of a full-scale raw sugar dryer. RTD results from the model show intuitive responses to variations in solids feed rate, rotational speed and drum inclination.  相似文献   

9.
An investigation of the thermal drying of lignite has been carried out, by using an indirect heat pilot rotary drum. The process aims at the production of dry lignite and clean steam as part of a gasification procedure. Both flighted and bare drum modes have been employed. Temperature profiles along the dryer length, the amount of evaporation (moisture conversion) and the solids residence time distribution (RTD) were measured. A non-isothermal model was tested under three different regimes of solids flow. Model integration, by taking account of experimental amount of evaporation at dryer exit and temperature profiles along the dryer length, has been utilized in the validation of drying kinetics and heat transfer correlations. Model predictions compare satisfactorily with the operating data of an indirect heat industrial lignite dryer. Overall heat transfer coefficients of the pilot rotary dryer were found to agree well with those reported for direct heat dryers.  相似文献   

10.
An overall system model for a countercurrent rotary dryer has been developed with the ullimale aim of assessing controller pairings in these dryers. This model is based on heat and mass balances within dryer regions combined with two subsidiary models, one describing the equipment (which determines particle transport and heat transfer)and the other describing the behaviour of the material (the drying kinetics). Six partial differential equations have been set up to evaluate six state variables: solids moisture content, solids temperature, gas humidity, gas temperature, solids holdup and gas holdup as functions of time and rotary dryer length. A control-volume method has been used to reduce the six partial differential equations with respect to time and the length of the rotary dryer to six ordinary differential equations in time.

The drying model has been implemented in the SPEEDUP flowsheeting package (with FORTRAN subroutines) The model has been validated by fifteen experiments-in a pilot scale countercurrent-flow rotary dryer (0.2m in diameter and 2m in length)  相似文献   

11.
Abstract

This paper discusses the transport of granular materials through flighted rotary drums operated at the optimum loading. A mathematical model is derived from the force balance acting on a single traveling particle, to predict the mean residence time of transportation. Based on the available parameters of mean height of falling curtains and final discharge angle, this model can be helpful to estimate the appropriate solid feeding rate. Two steps were followed to implement the use of the model. Firstly, experiments were carried out on a batch rotary drum to obtain the needed input parameters. Then, a case study of a small capacity rotary dryer was considered. In both steps, the drum was operated at the optimum loading. The model results were compared with other correlation from the literature for two cases of solid and air flows: con-current and counter current. Based on the results, a factor is introduced for generalized correlation from literature.  相似文献   

12.
ABSTRACT

This work presents methods for synthesizing drying process models for particulate solids that combine prior knowledge with artificial neural networks. The inclusion of prior knowledge is investigated by developing two applications with the data from two indirect rotary steam dryers. The first application consisted in the modelling of the drying process of soya meal in a batch indirect rotary dryer, The external and internal mass transfer resistances were associated in the hidden layer of the network to linear and sigmoidal nodes, respectively. The second application consisted in the modelling of the drying process of soya meal in a continuos indirect rotary dryer. The model was constructed using the Semi-parametric Design Approach. The model predicts the evolution of solid moisture content and temperature as a function of the solid position in the dryer. The results show that the hybrid model performs better than the pure “ black box” neural network and default models. They also shows that prior knowledge enhances the extrapolation capabilities of a neural network model,  相似文献   

13.
The following paper outlines the development of empirically fitted and pseudo-physically derived compartment models of a flighted rotary dryer with counter current airflow processing solid material. Underloaded, overloaded and design-loaded dryers are considered. Four key parameters are estimated to fit the empirical model to industrial residence time distribution data and common empirical mean residence time/holdup correlations. Utilising the fundamental structure of the empirical model and physical and mechanical properties such as the dryer and flight geometry as well as solids material properties, the number of estimated parameters in the pseudo-physical model was reduced to 2. The experimental data required to characterise and validate the models is discussed. Optimisations to determine the model parameters were undertaken by comparison with an experimental residence time distribution curve for an industrial dryer processing sugar. Simulation of the model using gPROMS® illustrates model performance. The potential to integrate the solids transport model and a full heat and mass transfer model is also discussed.  相似文献   

14.
Mathematical tools for studying panicle transpon in rotary drying and cooling processes are developed in this paper. In contrast to conventional approaches aimed at deriving empirical or xmi-empirical correlations, a rigorous mathematical analysis which employs dilferential calculus and analytical geometry is emphasis4 in the current research. These developments allow accurale computations of solid flowrate, retention time and particle holdup in rotary dryers with arbilrary flight configurations. Consequently, optimal dryer configuration design in terms of drum dimension, flight number and geometry can be achieved through a better understanding of the mathematical insight of rotary drum performance.

Techniques developed using this method are applied to the distributed parameter model eslablished earlier by the authors (Wang el al., 1993) to replace out-dated correlations for the determination of retention Lime and solid holdup. As a result of the new developments, the distributed parameter approach to the dynamics of rotary drying processes becomes more general and more reliable.  相似文献   

15.
ABSTRACT

A nonequilibrium distributed parameter model for rotary drying and cooling processes described by a set of partial differitial equations with nonlinear algebraic constraints is developed in this work. These equations arise from the multi–phase heat and mass balances on a typical rotary dryer. A computational algorithm is devekped by employing a polynonial approximation ( orthogonal collocation) with a glotal splinc technique leading to a differential–algebraic equation ( DAE) system. The numerical solution is carried out by using a standard DAE solver.

The two– phase–flow heat transfer coelficient is computed by introducing a correction factor to the commonly accepted correlations. Since interaction between the falling particles are considered in the correction factor,the results are more reliable than those computed by assuming that heat transfer between a single falling particle and the drying air is unaffected by other particles. The heat transfer computations can be further justified via a study on the analogies between heat and mass transfer.

The general model devloped in this work is mathematically more ritorous yet more flexible that the lumped parameter models established by one of the authors (Douglas et al., (1993)). The three major assumptions of an equilibrium operation, perfect mixing and constant drying raic, are removed in the distributed parameter model.

The simulation results are compared with the operational data from an industrial sugar dryer and predictions from earlier models. The model and algorithm successfully predict the steady state behaviour of rotary dryers and collers. The generalized model can be applied to fertilizer drying processes in which the assumption of constant drying rate is no longer valid and the existing dynamic models are not applicable.  相似文献   

16.
ABSTRACT

A complete simulation model has been developed for an industrial rotary dryer to account for the heat and mass exchange between the solids and the gas. This simulator is mainly composed of three models: solids transportation model, furnace model, and gas model. The solids transportation model is the modified Cholette-Cloutier model It consists of a series of interactive reservoirs which are subdivided into an active and a dead compartments to account for the characteristic extended tail of the residence time distribution (RTD) curves observed in industrial dryers.

To expand the validity of the model, experiments have been performed in an industrial rotary dryer to obtain RTD curves under different mineral concentrate and gas flow rates. This paper describes these experiments and presents the variation of the average residence time and model parameters as function of solids and gas flow rates.  相似文献   

17.
Abstract

Spray dryers fitted with rotary atomizers are commonly used in diverse industries to produce engineered powders on a large scale. Scale-up of such units is still largely empirical and based on prior experience and know-how. In the present study, a three-dimensional spray dryer with rotary atomizer is investigated numerically with a commercial CFD code. Continuous-phase, i.e., air, conservation equations are formulated in the Eulerian model while the droplet or particle equations are set up in the Lagrangian model. Two-way coupling between the continuous and dispersed phases is taken into account in the governing equations. The stochastic approach is used to predict the particle trajectories. The RNG k ? ? turbulence model was used. Typical results, viz. air velocity, temperature, humidity profiles, and particle trajectories are presented and discussed. Compared with the pressure nozzle spray dryer, more volume of drying chamber is used effectively by the rotating disc type spray dryer. It is found that evaporation and drying take place mainly in the region and in the vicinity of first contact between air and spray. A parametric study is presented and, where appropriate, comparison is made with experimental data obtained with the simulated spray dryer.  相似文献   

18.
《Drying Technology》2013,31(7):1307-1331
Abstract

The problem of operating freeze drying of pharmaceutical products in vials placed in trays of a freeze dryer to remove free water (in frozen state) at a minimum time was formulated as an optimal control problem. Two different types of freeze dryer designs were considered. In type I freeze dryer design, upper and lower plate temperatures were controlled together, while in type II freeze dryer design, upper and lower plate temperatures were controlled independently. The heat input to the material being dried and the drying chamber pressure were considered as control variables. Constraints were placed on the system state variables by the melting and scorch temperatures during primary drying stage. Necessary conditions of optimality for the primary drying stage of freeze drying process in vials are derived and presented. Furthermore, an approach for constructing the optimal control policies that would minimize the drying time for the primary drying stage was given. In order to analyze optimal control policy for the primary drying stage of the freeze-drying process in vials, a rigorous multi-dimensional unsteady state mathematical model was used. The theoretical approach presented in this work was applied in the freeze drying of skim milk. Significant reductions in the drying times of primary drying stage of freeze drying process in vials were obtained, as compared to the drying times obtained from conventional operational policies.  相似文献   

19.
A SIMPLE DYNAMIC MODEL FOR SOLID TRANSPORT IN ROTARY DRYERS   总被引:1,自引:0,他引:1  
The solid particle movement in a rotary drum plays an important role in drying processes. The solid distribution in the drum affects the amount of contact surface between the solid and the gas. The retention time of solids influences the time particles can stay in contact with the gas in order to transfer heat and mass. Any heat and mass transfer model for a solid particle dryer must be able to predict solid flowrate and solid hold-up. There have been several reports in the literature regarding the modelling aspects of solid transport in dryers. If the model is developed for model-based control, it must be simple and yet represent dynamics of the system accurately. This paper addresses solid motion modelling and the effects of different variables involved in solid transport phenomena. Sugar drying process is the case study in this work. A steady state semi-empirical model was modified to predict solid hold-up and flowrate in rotary dryers. This model was incorporated into a heat and mass transfer model ;o predict solid moisture and temperature for inferential and model-based control purposes. Results of several experiments that have been used to investigate dynamics of the system in terms of solid motion and to validate the model are also presented. The approach advocated in this paper is directly applicable to the transport of other solids in rotary drum equipment and can thus be regarded as a generalized model.  相似文献   

20.
Closed-loop drying systems are an attractive alternative to conventional drying systems because they provide a wide range of potential advantages. Consequently, type of drying process is attracting increased interest. Rotary drying of wood particles can be assumed as an incorporated process involving fluid–solid interactions and simultaneous heat and mass transfer within and between the particles. Understanding these mechanisms during rotary drying processes may result in determination of the optimum drying parameters and improved dryer design. In this study, due to the complexity and nonlinearity of the momentum, heat, and mass transfer equations, a computerized mathematical model of a closed-loop triple-pass concurrent rotary dryer was developed to simulate the drying behavior of poplar wood particles within the dryer drums. Wood particle moisture content and temperature, drying air temperature, and drying air humidity ratio along the drums lengths can be simulated using this model. The model presented in this work has been shown to successfully predict the steady-state behavior of a concurrent rotary dryer and can be used to analyze the effects of various drying process parameters on the performance of the closed-loop triple-pass rotary dryer to determine the optimum drying parameters. The model was also used to simulate the performance of industrial closed-loop rotary dryers under various operating conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号