首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drying experiments with single, porous spheres wetted with mixtures of 2- propanol and water were performed using superheated steam, air, or steam-air mixtures as drying agent. Both the drying rate and the moisture composition were determined experimentally for different temperatures and compositions of the drying agent and for different initial compositions of the moisture. It is shown that evaporation of 2-propanol is enhanced by using superheated steam as drying agent instead of air due to steam condensing on the sample. While the overall drying rate increases with rising steam temperature, the evaporation rate of 2-propanol is hardly affected. When drying samples containing mixtures of 2- propanol and water, internal boiling can occur depending on the vapor-liquid equilibrium. Vapor generated inside the sample may cause mechanical dewatering of the sample which greatly increases the drying rate.  相似文献   

2.
ABSTRACT

High temperature convective drying of single wood chips with air and superheated steam respectively is studied theoretically. The two-dimensional model presented describes the coupled transport of water, vapour, air and heat. Transport mechanisms included are the convection of gas and liquid, intergas as well as bound water diffusion. In the initial part of the drying process, moisture is transported to the surface mainly due to capillary forces in the transversal direction where evaporation occurs, As the surface becomes dry, the drying front moves towards the centre of the particle and an overpressure is simultaneously built up which affects the drying process

The differences between drying in air and steam respectively can be assigned to the physical properties of the drying medium. The period of constant drying rate which does not exist (or is very short) in air drying becomes more significant with decreasing amounts of air in the drying medium and is clearly visible in Dure superheated steam drying. The maximal drying rate is larger in air drying, and shorter drying times are obtained since the heat flux to the wood chip particle increases with increasing amounts of air in the drying medium. The period of falling drying rate can be divided into two parts: in the first, the drying rate is dependent upon the humidity of the drying medium whereas in the second, there is no such correlation.  相似文献   

3.
ABSTRACT

The drying of paper under impinging jets of superheated steam and air during the falling rate period was investigated in the range of jet temperatures 150 < Tj < 450oC and basis weights 30 < B < 150 g/m2. The equilibrium moisture content of Kraft and TMP paper was measured. The adsorption energy of water on pulp fibers near the boiling point appears lower than the value extrapolated from Prahl s (1968) measurements made in air at lower temperatures. The critical moisture content was determined for superheated steam and air impingement drying. Complete drying rate - moisture content histories are presented for a series of typical conditions.  相似文献   

4.
Abstract

Above a given temperature, referred to as the inversion temperature, superheated steam is a more effective drying agent than humid air or even than dry air. However, no agreement has been reached in what concerns the definition of both the inversion temperature and its numerical value. Recent works attempted to clarify the different definitions of the inversion temperature, taking into account the obtained different numerical values. In this work, some of the ideas presented recently are developed and worked out in such a way that new graphical presentations of data are obtained, leading to a better understanding of the inversion temperature and of its value. The issues concerning the influence of the steam content of the drying agent on the evaporation rate, for different drying conditions and for a given inlet temperature of the drying agent, are clarified. The present results provide useful information on what concerns the influence of the convective drying conditions and parameters over the evaporation rate.  相似文献   

5.
High temperature convective drying of single wood chips with air and superheated steam respectively is studied theoretically. The two-dimensional model presented describes the coupled transport of water, vapour, air and heat. Transport mechanisms included are the convection of gas and liquid, intergas as well as bound water diffusion. In the initial part of the drying process, moisture is transported to the surface mainly due to capillary forces in the transversal direction where evaporation occurs, As the surface becomes dry, the drying front moves towards the centre of the particle and an overpressure is simultaneously built up which affects the drying process

The differences between drying in air and steam respectively can be assigned to the physical properties of the drying medium. The period of constant drying rate which does not exist (or is very short) in air drying becomes more significant with decreasing amounts of air in the drying medium and is clearly visible in Dure superheated steam drying. The maximal drying rate is larger in air drying, and shorter drying times are obtained since the heat flux to the wood chip particle increases with increasing amounts of air in the drying medium. The period of falling drying rate can be divided into two parts: in the first, the drying rate is dependent upon the humidity of the drying medium whereas in the second, there is no such correlation.  相似文献   

6.
S. Pang  M. Dakin 《Drying Technology》2013,31(6):1135-1147
Abstract

Two charges of green radiata pine sapwood lumber were dried, either using superheated steam under vacuum (90°C, 0.2 bar abs.) or conventionally using hot moist air (90/60°C). Due to low density of the drying medium under vacuum, the circulation velocity used was 10 m/s for superheated steam drying and 5.0 m/s for moist air drying, and in both cases, the flow was unidirectional. In drying, stack drying rate and wood temperatures were measured to examine the differences between the superheated steam drying and drying using hot moist air.

The experimental results have shown that the stack edge board in superheated steam drying dried faster than in the hot moist air drying. Once again due to the low density of the steam under vacuum, a prolonged maximum temperature drop across load (TDAL) was observed in the superheated steam drying, however, the whole stack dried slower and the final moisture content distribution was more variable than for conventional hot moist air drying. Wood temperatures in superheated steam drying were lower.  相似文献   

7.
ABSTRACT

Low-fat snack products are the driving forces for the drying of tortilla chips before frying. Super-heated steam impingement drying of foods has the advantage of improved energy efficiency and product quality. The temperature profile, drying curves, and the physical properties (shrinkage, crispiness, starch gelatinization and microstructure) of tortilla chips dried at different superheated steam temperatures and heat transfer coefficients were measured. Results indicated that the steam temperature had a greater effect on the drying curve than the heat transfer coefficient within the range of study. The microstructure of the samples after steam drying showed that higher steam temperature resulted in more pores and coarser appearance. The modulus of deformation and the shrinkage of tortilla chips correlated with moisture content. A higher steam temperature caused less shrinkage and a higher modulus of deformation. The pasting properties showed that samples dried under a higher steam temperature and a higher heat transfer coefficient gelatinized less during drying and had a higher ability to absorb water. Comparison of the superheated steam drying and air drying revealed that at elevated temperatures the superheated steam provided higher drying rates. Furthermore, there was a less starch gelatinization associated with air drying compared to superheated steam drying.  相似文献   

8.
《Drying Technology》2013,31(8):2063-2079
A new drying method of combined superheated steam and microwave drying is being proposed. The drying rates of sintered glass beads in combined superheated steam and microwave drying are experimentally and theoretically investigated. Drying experiments have been carried out in a waveguide where a standing wave is formed to uniformly heat a small sample. Concerning drying rate curves in combined superheated steam and microwave drying, a distinct constant rate period has been observed. For the falling rate period, high drying rates have been observed. For both periods, the drying rates in combined superheated steam and microwave drying are higher than those in superheated steam alone. Also, in comparison with the results of combined nitrogen and microwave drying, the normalized drying rates in combined superheated steam and microwave drying are higher than those at less than the critical moisture content in combined nitrogen and microwave drying. Moreover, theoretical drying rates for the falling rate period (predicted by a modified receding evaporation front model) in combined superheated steam and microwave drying, are in good agreement with the observed drying rates. The combined superheated steam and microwave drying method can attain higher drying rates under mild external conditions.  相似文献   

9.
S. Pang 《Drying Technology》2013,31(2):651-670
ABSTRACT

A mathematical model for high-temperature drying of softwood lumber with moist air has been modified and extended to simulate wood drying with superheated steam. In the simulation, differences between the two types of drying are considered, these include: external heat and mass transfer processes and calculation of equilibrium moisture content. The external mass transfer coefficient in the perheated steam drying was found to be much higher than that in the moist air drying, however, the heat ransfer coefficients for these two cases were of the same order. The predicted drying curves and wood temperatures from the superheated steam drying model were compared with experimental data and there was close agreement. Further studies will apply the model to development of commercial drying schedules for wood drying with superheated steam.  相似文献   

10.
《Drying Technology》2013,31(7):1419-1434
ABSTRACT

Drying of porous solids was experimentally investigated in superheated steam as well as in air. Drying rate curves, including critical moisture contents, in steam at subatmospheric pressure, were compared to those for air at atmospheric pressure; moreover, they were compared to those for steam at atmospheric pressure as well. The former comparison was carried out under conditions of sample temperatures of 41.8–42.5°C (which were nearly equal to saturation temperatures of 42.1–42.2°C at pressures of 8.23–8.30 kPa) for the constant rate period in steam and the corresponding sample temperatures of 42.0–45.0°C (which were close to the wet-bulb temperatures) for the constant rate period in air. There were distinct differences between normalized drying rate curves, including critical moisture contents in steam and in air at the above similar sample temperatures for materials of baked clay, firebrick, and cemented glass balloons over the minimum value of 8.3 × 10?3 µm and up to the maximum value of 1.2 × 102 µm in cumulative pore-size distributions: longer constant rate periods and lower critical moisture contents in steam than in air, and higher drying rates in steam than in air for the falling rate period. Moreover, the latter comparison of the drying rates in steam at subatmospheric pressure to those in steam at atmospheric pressure revealed that the differences in normalized drying rates between subatmospheric pressure and atmospheric pressure were small for both materials under mild external conditions. These findings were common to the baked clay, firebrick, and cemented glass balloons over a wide range of pore-size distributions studied in the present work, as well as sintered coarse glass beads as previously reported.  相似文献   

11.
采用热空气喷雾干燥和过热蒸汽喷雾干燥制备粉末橡胶,并研究其干燥胶粉的形态结构及性能。FT-IR表明,热空气喷雾干燥比过热蒸汽喷雾干燥更容易引入含氧基团,造成粉末橡胶氧化分解。SEM表明过热蒸汽喷雾干燥使物料干燥程度更高,有利于水分蒸发。GPC表明热空气喷雾干燥容易破坏橡胶分子链,降低橡胶分子量,过热蒸汽喷雾干燥更能保持橡胶原有分子链。  相似文献   

12.
Drying with superheated steam and hot air were comparatively studied for pork. Transport, physical, and chemical properties, i.e., effective diffusivity, color, microstructure, and rehydration ability, were investigated. The experimental results have shown that the decrease of pork moisture content in an early drying time was more rapid in superheated steam than in hot air and appeared to be lower in a latter time. The pork surface as examined by SEM was noticeably different for the samples dried by superheated steam and hot air. The fewer pores at the surface of superheated steam-dried pork caused a slower water penetration into the interior during rehydration, in addition to the lower drying rate. The color of the product from superheated steam was a relatively more intense brown than that obtained from hot air as presented by a lower L? value and a higher a? value.  相似文献   

13.
A Comparative Study of Pork Drying Using Superheated Steam and Hot Air   总被引:1,自引:0,他引:1  
Drying with superheated steam and hot air were comparatively studied for pork. Transport, physical, and chemical properties, i.e., effective diffusivity, color, microstructure, and rehydration ability, were investigated. The experimental results have shown that the decrease of pork moisture content in an early drying time was more rapid in superheated steam than in hot air and appeared to be lower in a latter time. The pork surface as examined by SEM was noticeably different for the samples dried by superheated steam and hot air. The fewer pores at the surface of superheated steam-dried pork caused a slower water penetration into the interior during rehydration, in addition to the lower drying rate. The color of the product from superheated steam was a relatively more intense brown than that obtained from hot air as presented by a lower L* value and a higher a* value.  相似文献   

14.
Desorption isotherms for shrimp were determined at the temperatures of 50, 60, 70 and 80°C. Amongst the moisture equilibrium predictions between the BET and GAB models, the latter has a better predictable capability. The GAB parameters are correlated with the temperatures by the Arrhenius expression. Drying characteristics of shrimp in drying media at the temperature range of 120-180°C for superheated steam and of 70-140°C for hot air have been examined. Drying rate and effective diffusion coefficient are used to quantify quantitatively the difference between the superheated steam and the hot air dryings. The temperature is more important effect on drying rate and effective diffusion coefficient in the superheated steam than in the hot air. Inversion temperature exists between 140 and 150°C. Comparing to the hot air, the shrimp dried by the superheated steam shows a lower degree of shrimp shrinkage. In addition, product colours are slightly different to those from the commercial sources.  相似文献   

15.
The control of the dried product's moisture content is of importance in the production of fuel pellets. Tests have been made in air and superheated steam in a spouted bed using the outlet temperature of the drying medium as a control parameter of the dried material's moisture content. For superheated steam different settings for the inlet medium temperature are also used. In the moisture content interval of 8-17% wet base there is a linear correlation between the dried material moisture content and the outlet temperature of the drying medium. When drying nonscreened sawdust in a spouted bed it is recommendable to use the outlet temperature of the drying medium as a control parameter of the dried material moisture content. This is independent of the size of the sawdust, whether superheated steam or air is used as a drying medium.  相似文献   

16.
过热蒸汽间歇干燥酒精糟研究   总被引:2,自引:1,他引:2  
以高湿物料酒精糟为研究对象,进行了过热蒸汽间歇干燥实验研究。利用自行设计的间歇干燥实验台,酒精糟的初始含水质量分数为66.7%,研究了不同实验条件对干燥速率的影响。结果表明:随着干燥介质温度的升高,干燥速率明显加快;被烘物料质量越少,烘干时间越短;随着物料颗粒直径的减小,恒速段的干燥速率基本不变,而降速段的干燥速率明显增加;过热蒸汽质量流量越大,干燥速率越高。因此随着蒸汽过热度的升高、质量流量的增大,过热蒸汽干燥速率加快,干燥效率越高;随着进料质量的增加、颗粒直径的增大,过热蒸汽干燥速率却有所降低。  相似文献   

17.
Above a given temperature, referred to as the inversion temperature, superheated steam is a more effective drying agent than humid air or even than dry air. However, no agreement has been reached in what concerns the definition of both the inversion temperature and its numerical value. Recent works attempted to clarify the different definitions of the inversion temperature, taking into account the obtained different numerical values. In this work, some of the ideas presented recently are developed and worked out in such a way that new graphical presentations of data are obtained, leading to a better understanding of the inversion temperature and of its value. The issues concerning the influence of the steam content of the drying agent on the evaporation rate, for different drying conditions and for a given inlet temperature of the drying agent, are clarified. The present results provide useful information on what concerns the influence of the convective drying conditions and parameters over the evaporation rate.  相似文献   

18.
S. Pang  M. Dakin 《Drying Technology》1999,17(6):1135-1147
Two charges of green radiata pine sapwood lumber were dried, either using superheated steam under vacuum (90°C, 0.2 bar abs.) or conventionally using hot moist air (90/60°C). Due to low density of the drying medium under vacuum, the circulation velocity used was 10 m/s for superheated steam drying and 5.0 m/s for moist air drying, and in both cases, the flow was unidirectional. In drying, stack drying rate and wood temperatures were measured to examine the differences between the superheated steam drying and drying using hot moist air.

The experimental results have shown that the stack edge board in superheated steam drying dried faster than in the hot moist air drying. Once again due to the low density of the steam under vacuum, a prolonged maximum temperature drop across load (TDAL) was observed in the superheated steam drying, however, the whole stack dried slower and the final moisture content distribution was more variable than for conventional hot moist air drying. Wood temperatures in superheated steam drying were lower.  相似文献   

19.
DRYING OF SLICED RAW POTATOES IN SUPERHEATED STEAM AND HOT AIR   总被引:2,自引:0,他引:2  
Drying experiments were conducted on raw potato slices, using atmospheric pressure superheated steam and hot air as drying media at 170 and 240°C. Mass changes of the material were continuously measured, the conditions of cross section near the surfaces were observed with an electron microscope, also color changes of their surface were measured during drying. The respective drying methods and temperature conditions were compared and it was found that, in the case of superheated steam drying, moisture content temporarily increases due to steam condensation in the initial stage of drying, therewith, as well as starch gelatinization rapidly develops. Meanwhile, in case of hot air drying, starch gelatinization occurs more slowly than with superheated steam drying and that non-gelatinized starch granules remain on the surface when drying was completed. Furthermore, surface color measurements showed that samples dried by superheated steam were more reddish than ones dried by hot air and the surfaces were more glossy, because no starch granules remain on the surface in case of superheated steam drying.  相似文献   

20.
Drying of porous solids was experimentally investigated in superheated steam as well as in air. Drying rate curves, including critical moisture contents, in steam at subatmospheric pressure, were compared to those for air at atmospheric pressure; moreover, they were compared to those for steam at atmospheric pressure as well. The former comparison was carried out under conditions of sample temperatures of 41.8-42.5°C (which were nearly equal to saturation temperatures of 42.1-42.2°C at pressures of 8.23-8.30 kPa) for the constant rate period in steam and the corresponding sample temperatures of 42.0-45.0°C (which were close to the wet-bulb temperatures) for the constant rate period in air. There were distinct differences between normalized drying rate curves, including critical moisture contents in steam and in air at the above similar sample temperatures for materials of baked clay, firebrick, and cemented glass balloons over the minimum value of 8.3 × 10-3 µm and up to the maximum value of 1.2 × 102 µm in cumulative pore-size distributions: longer constant rate periods and lower critical moisture contents in steam than in air, and higher drying rates in steam than in air for the falling rate period. Moreover, the latter comparison of the drying rates in steam at subatmospheric pressure to those in steam at atmospheric pressure revealed that the differences in normalized drying rates between subatmospheric pressure and atmospheric pressure were small for both materials under mild external conditions. These findings were common to the baked clay, firebrick, and cemented glass balloons over a wide range of pore-size distributions studied in the present work, as well as sintered coarse glass beads as previously reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号