首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of pretreatment before microwave vacuum drying (MVD) on texture, color, expansion, rehydration, drying rate, microstructure, sensory evaluation, and other properties of sweet potato were investigated in this study. The pretreatment consisted in five processing conditions, using blanching; osmotic dehydration at 35°Brix of sucrose (OD); ultrasound in distilled water (US); ultrasound in distilled water before osmotic dehydration (US?+?OD), and ultrasound-assisted osmotic dehydration (USOD). Pretreatments of sweet potato before MVD have shown success in reducing drying time with US treatment relatively more effective regarding drying time than other treatments. Compared with other treatments, US showed the highest rehydration ratio values. The osmotic group pretreatment exhibited a pronounced effect on water loss and solid gain, improved the color, aroma, and taste of dried sweet potato, whereas sucrose impregnation resulted in a hard texture observed with OD sample. USOD samples had a higher expansion ratio, lower hardness and color difference values, appeared less cell damaged, and recorded better overall quality than the other samples. There was a slight difference between USOD and US?+?OD samples. Combining osmotic dehydration with ultrasound as a pretreatment can significantly accelerate the heat transfer rate, reducing the dried time accordingly and increasing energy efficiency.  相似文献   

2.
This work examined the influence of the ultrasonic pretreatment prior to air drying on dehydration of melon (Curcumis melo L.). Ultrasonic pretreatment for air drying of fruits was studied and compared with osmotic dehydration. This study allowed estimate of the effective diffusivity water in the air-drying process for melons submitted to ultrasonic pretreatment. Results show that the water effective diffusivity increases after application of ultrasound causing a reduction of about 25% in the drying. During ultrasonic treatment the melons lost sugar, so such a pretreatment stage can be a practical process to produce dried fruits with lower sugar content. Compared to osmotic dehydration, the use of ultrasonic pretreatment performed better when large amounts of water need to be removed from the fruit, since the combined processing time (pretreatment and air drying) is shorter.  相似文献   

3.
This work examines the influence of ultrasonic and ultrasonic assisted osmotic dehydration pretreatments on the dehydration of eight fruits (banana, genipap, jambo, melon, papaya, pineapple, pinha, and sapota). An overview of the effects of ultrasound application on water loss, sugar gain, and effective diffusivity of water during the dehydration process is presented. The results showed significant differences for water loss and sugar gain among the fruits that were studied, which were analyzed based on the changes observed on the tissue structure of the fruit. The results also showed that the effective diffusivity of water in the fruit increased after application of ultrasound reducing air-drying time.  相似文献   

4.
Abstract

Pretreatments of blanching (BL); osmotic dehydration at 35°Brix of sucrose (OD); ultrasound in distilled water (UD), and ultrasound-assisted osmotic dehydration (UO) were carried out for microwave-vacuum drying (MVD) orange- and purple-flesh sweet potato slices, and effects on their properties were investigated in this study. UO had improvements effects on water loss, solid gain, and relaxation time of the samples compared to other pretreatments. Low-field nuclear magnetic resonance results offered a view of water state concerning the effects of different pretreatments on sweet potato. UD treatment following by BL showed a long relaxation time corresponding to the weaker degree of bound hydrogen proton or the greater freedom degree of hydrogen comparing to other pretreated samples. Differential scanning calorimetry parameters appeared to be sensitive to pretreatments by increased Tg value compared to blanched sample. The value of Tg shows that it does not depend only of the water content but also on the experimental conditions (pretreatments). The dried sweet potato exhibited amorphous structures as evidenced by the X-ray diffractograms due to the BL treatment and MVD. Concentration of total phenolics and anthocyanins were high in purple sweet potatoes, whereas content of vitamin C and total carotenoid were high in orange ones. Application of UO is suitable for retention of bioactive compound and stability of MVD sweet potato slices.  相似文献   

5.
《Drying Technology》2012,30(15):1750-1755
Ultrasound pretreatment of wood prior to drying was examined as a method to increase the effective water diffusivity, reduce drying time, and improve product quality of Chinese Catalpa wood. Pretreatment tests were carried out at three pretreatment durations, three absolute pressure levels, and three ultrasonic intensities. All specimens were then dried at 60°C and the absolute pressure level of 0.02 MPa to determine the effects of pretreatment parameters on vacuum drying characteristics. A microscopic analysis was carried out to visualize the formation of microchannels and view any other changes to wood tissue structure that occurred. Results showed that ultrasound pretreatment prior to vacuum drying enhances the effective water diffusivity; the higher the ultrasound power level, the longer the pretreatment time, and the lower the absolute pressure, the shorter is the drying time. Ultrasound creates micro channels within the tissue of wood during pretreatment. However, the pretreatment time should not be too long when the ultrasound is high.  相似文献   

6.
Osmotic dehydration of ginger with honey is an interesting alternative for the development of confectionary-based functional food with extended shelf life. Response surface methodology (RSM) was used to investigate the effects of process variables on solid gain, water loss, and overall acceptability of honey-ginger candy. The process variables included blanching time (6–10 min), osmotic solution temperature (30–50°C), immersion time (90–150 min), and convective drying temperature (50–70°C). The honey to ginger ratio was 4:1 (w/w) during all the experiments. Ginger cubes were blanched before osmotic dehydration to increase the permeability of the outer cellular layer of tissue. After osmotic concentration of ginger with honey, convective dehydration was done to final moisture content of 3–5% (w.b.) to make it a shelf-stable product. Finally, osmo-convectively dried ginger was coated with sucrose for candy preparation. The optimum osmo-convective process conditions for maximum solid gain, water loss, and overall acceptability of honey-ginger candy were 7.07 min blanching time, 50°C solution temperature, 150 min immersion time, and 60°C convective drying temperature.  相似文献   

7.
Osmotic dehydration of whole seabuckthorn berries, followed by convective or vacuum drying, was investigated. First, different pretreatments were applied to the fruits in order to accelerate the rate of osmotic dehydration: immersion in liquid nitrogen, steam blanching, or freeze cycles. Immersion in liquid nitrogen was found to be the best pretreatment to maximize dehydration rate and to increase sugar gain during osmotic dehydration. An evaluation of moisture loss and sugar gain kinetics during osmotic dehydration of seabuckthorn fruits pretreated with liquid nitrogen, followed by vacuum or hot-air drying, was then performed. Loss of nutritional compounds due to processing was also measured. Sugar intake and partial dehydration of seabuckthorn samples increased with osmosis time and reached an equilibrium value after 4 h treatment. The finish drying methods (vacuum or convective) applied after OD showed a marked impact on the remaining moisture content of seabuckthorn samples. Concentration of some nutritional compounds was, however, dramatically reduced after the combined osmotic dehydration/drying processes.  相似文献   

8.
The effect of ultrasound-assisted osmotic dehydration applied at atmospheric pressure for different lengths of time on papaya tissue structure was evaluated. Ultrasound induced the loss of cellular adhesion, formation of large cell interspaces, and light rupture of the cell walls. The changes in the tissue structure caused by ultrasound application increased sugar loss, water loss, and effective water diffusivity. Ultrasound-assisted osmotic dehydration induced a gradual distortion in the shape of the cells, loss of cellular adhesion, and the formation of large channels caused by rupture of the cell walls. The changes caused by the application of osmotic dehydration resulted in high water loss and sugar gain.  相似文献   

9.
This work examines the influence of ultrasonic pretreatment prior to air drying on dehydration of sapota (Achras sapota L.). This study allowed estimate of the effective water diffusivity in the air-drying process for sapotas submitted to ultrasonic pretreatment. Results show that the water effective diffusivity increases after application of ultrasound, causing a reduction of about 23% in the drying time. During ultrasonic treatment in distilled water, the sapota fruit displayed reduction in sugar content, so such a pretreatment stage can be a practical process to produce dried fruits with lower sugar content if it is made cost-effective.  相似文献   

10.
This paper presents the results of experimental studies on convective drying of cherries (Prunus cerasus L.) in stationary and intermittent conditions, previously pretreated with ultrasonic assisted osmotic dehydration. The effect of a stepwise changing air temperature and osmotic pretreatment on drying kinetics and the biomaterial quality were investigated. The main aim of the studies was to find the possibly best drying conditions, by which the drying time was shortened and the product quality degradation was minimized. Except drying kinetics and total color and water activity changes, the effect of osmotic pretreatment expressed by such parameters as the Solid Gain and the Water Loss were examined. It was proved that intermittent drying of cherries preceded by ultrasonic assisted osmotic dehydration contributes to shorter drying time, better color preservation and smaller water activity.  相似文献   

11.
Abstract

In this study, ultrasonic assisted osmotic pretreatment and pulsed vacuum assisted osmotic pretreatment were applied to investigate their effects on water migration and volatile components of heat pump dried Tilapia fillets. To achieve that, some effective parameters including sample drying rate, water diffusivity, microstructure, water morphology, water distribution, and volatile components were compared and analyzed with some advanced measurement devices. The water diffusivity, water distribution characteristics, and composition of volatile components were obtained after different pretreatment methods. As the drying process progresses, the sample moisture content decreases. Meanwhile, the high-degree-of-freedom water migrates to the low-degree-of-freedom water and the water-solid bond strength increases. Subsequently, the effective water diffusion coefficients of control group (without pretreatment samples), ultrasonic assisted osmosis pretreatment group and pulsed vacuum assisted osmosis pretreatment group were measured as 4.304?×?10?7m2/s, 6.109?×?10?7m2/s, and 5.003?×?10?7m2/s, respectively. In addition, the control group, ultrasonic assisted osmosis group, and pulse vacuum assisted osmosis group contained 52, 59, and 41 volatile compounds, respectively. Compared to the results from the control group, the water diffusion coefficients of ultrasonic osmotic pretreatment and pulse vacuum osmotic pretreatment increased by 41.94% and 16.24%, respectively. From the point of view of increasing drying rate, the ultrasonic penetration pretreatment provided better improvement, which was exactly consistent with the results of microstructure. On the other hand, the ultrasonic assisted osmotic pretreatment group had more types of volatile compounds, which could stimulate more flavored substances to be released. Evidently, the samples with ultrasonic assisted osmotic pretreatment showed less drying time and more aromatic substances whereas the samples from the pulsed vacuum assisted osmotic pretreatment had better protein protection feature. Although the dried samples had higher ratio of bound water and better storage stability after these two pretreatment methods, from the point of view of increasing drying rate and stimulating flavor substances, the ultrasonic assisted osmosis pretreatment method had more advantages. The research outcomes can contribute to optimize better pretreatment methods for the process of heat pump dried Tilapia fillets.  相似文献   

12.
Ultrasound-assisted osmodehydrofreezing technique is a partial dehydration technique prior to freezing to diminish the tissue damage and preserve the quality by quickly removing part of the water from vegetable tissues. In this study, radish cylinders with three different water contents (85%, 80% and 75%, w/w) were dehydrated by osmotic dehydration (OD) and ultrasound-assisted osmotic dehydration (UOD). The effects of OD and UOD pretreatment on the characteristics (e.g., latent heat of fusion of ice, freezable water and microstructure) of dehydrated products and quality attributes (e.g., freezing time, firmness, drip loss and ascorbic acid content) of osmodehydrofrozen products were investigated. Ultrasound application significantly shortened the time of dehydration and subsequent freezing. Compared to OD products with equal water content, UOD products exhibited less freezable water content and better preservation on firmness and microstructure. After freezing/thawing, frozen products of UOD also displayed less drip and ascorbic acid losses and better firmness than that of OD.  相似文献   

13.
Optimization of the process parameters for osmotic dehydration of 12.2-mm potato cubes was carried out using response surface methodology. The experiments were conducted using a central composite rotatable design (CCRD) with four factors, viz. sucrose concentration (27.5–42.5% w/w), salt concentration (7.5–12.5% w/w), total osmosis time (26.25–68.75 min), and microwave power density for the initial 4 min (0.375–1.125 W/g of total weight of solution and potato cubes) at two levels each to take into account the individual and interaction effects of the factors. A sample-to-solution ratio of 1:10 and pressure of 0.16 kPa for the initial 4 min were kept constant throughout all of the experiments. It was found that the linear effects of all factors on the water loss (WL) and solids gain (SG) were highly significant. The optimum condition was found at a sucrose concentration of 36.35%, salt concentration of 12.50%, osmosis time of 68.72 min, and microwave power density of 0.38 W/g for the initial 4 min, with a WL of 37.26% initial weight and SG of 8.74% initial weight. The drying of potato cubes was carried out using hot air, microwave–vacuum, and osmotic microwave–vacuum drying methods. It was found that potato cubes dried by combined osmotic microwave–vacuum had better sensory qualities.  相似文献   

14.
The aim of this study was to analyze the influence of pulsed electric field pretreatment (PEF) on the osmotic dehydration of apple tissue. Osmotic dehydration was carried out in sucrose solution at 40°C and 100 rpm in a water-bath shaker. PEF pretreatment was performed using varying field strength of 5 and 10 kV/cm and 10 and 50 pulses. On the basis of electric conductivity measurement, the cell disintegration index was calculated. The course of osmotic dehydration was described by means of water loss, solid gain, weight reduction, and water content changes. Moreover, the course of the process was described by different mathematical models that are commonly used in the literature. PEF application before osmotic dehydration significantly increased water loss after 60 minutes of the process. In turn, no significant differences were found in the case of solid gain. The highest osmotic dehydration efficiency ratio (WL/SG) was noticed for samples treated by PEF at the electric field strength of 5 kV/cm and 10 pulses. The statistical analysis of mathematical modeling of the process showed the equations utilized generally exhibit a good fit to the experimental data.  相似文献   

15.
Abstract

This work evaluated the effect of ultrasonic pretreatment on the production of dehydrated apples (Malus domestica L. var Granny Smith) in a fluidized bed dryer. Cube-shaped apple samples were subjected to ultrasound in an ultrasonic bath and dried in a fluidized bed drier. The experimental design evaluated the effect of ultrasound pretreatment time (0 to 30?min) on the soluble solids loss during pretreatment and on the drying time. The ultrasonic pretreatment was carried out in a bath ultrasound operating at 25?kHz and outputting 55?W/m3 of power density. Distilled water was applied in the pretreatment to produce low-calorie apple cubes. Fluidized bed drying was carried out at 30, 40, and 50?°C. Fick’s law was used to model the drying process and to determine the apparent water diffusivity. The soluble solid loss ranged between 8.7 and 21.2% during the pretreatment, and the apparent water diffusivity during air drying ranged from 1.09?×?10?6 to 2.81?×?10?6 m2/min. Ultrasound pretreatment increased the apparent water diffusivity up to 58%. Apple cubes subjected to 20?min of ultrasound pretreatment and dried at 50?°C presented the highest apparent water diffusivity and dried to achieve a water activity of 0.4 in 100?min.  相似文献   

16.
Carrot slices were subjected to the following four different pretreatments prior to vacuum frying: (1) blanching, (2) blanching and air drying, (3) blanching and osmotic dehydration, (4) blanching, osmotic dehydration, followed by freezing. The effects of these pretreatments on the physicochemical properties and fat distribution in vacuum-fried carrot chips were also investigated. There were significant differences in the total yield, amounts of carotenes, vitamin C, and the color values of carrot chips following different pretreatments (P < 0.05). Pretreatment significantly affected the water content, fat content, and water activity of carrot chips (P < 0.05), while there were no significant differences in the breaking force of carrot chips treated with different pretreatments (P > 0.05). Spearman correlation analysis showed a high positive correlation between the fat content of carrot chips and the initial water content of carrot slices. The fat distribution pattern depended on the initial water content and the structure of the material left by water evaporation.  相似文献   

17.
Chestnuts were dehydrated by using a combined method of osmotic dehydration followed by air drying. Samples were osmotically pretreated with sucrose (60% w/w) and glucose (56% w/w) for 8 h, air-dried at temperatures of 45, 55, and 65°C, at a relative humidity of 30% and at a velocity of 2.7 m·s?1 and the experimental data of the drying kinetics were obtained. Whole samples were dried with different peelings: (a) removal of endocarp and pericarp (peeled) and (b) additionally the internal rough surface (cut). In all cases, cut chestnuts show greater drying rates than peeled samples, indicating that a significant mass transfer resistance in the layer nearest to the surface takes place. Peeled samples pretreated with sucrose solutions behave in a similar way to untreated samples. For the rest of the samples, the cut samples osmotically treated with sucrose solutions and all the samples treated with the glucose solution, the drying rates decrease during drying. Drying kinetics are successfully modeled by employing a diffusional model that takes the shrinkage into account. The effective coefficient of water diffusion was evaluated and correlated with temperature. The quality of the final product was monitored by color change. In spite of the fact that the total color difference is not modified by the osmotic treatment, the L?, a?, and b? color coordinates of cut samples treated with sucrose and glucose solutions do undergo changes; the L? and a? coordinates change less than the b?.  相似文献   

18.
A new pretreatment method involving use of ultrasound prior to microwave freeze drying of sea cucumber was examined experimentally. It was observed that ultrasound-assisted osmotic pretreatment can reduce by about 2 h the time needed for microwave freeze drying. An optimization study using response surface analysis was carried out to determine the optimal operating parameters to minimize drying time while maximizing quality.  相似文献   

19.
Effects of osmotic dehydration (OD) pretreatment on the texture characteristics of peach chips after combination drying were investigated. Peach slices were immersed into 100, 300, and 500?g/L sucrose solution for 4?h, respectively, at room temperature and then predried to a critical moisture content of 0.5?kg water/kg dry matter that was determined by the effective moisture diffusivity (Deff) curves under infrared drying at 80°C. The peach chips were then dried using explosion puffing drying (EPD). The sucrose solution with lower concentration (100?g/L) would improve the drying rate (DR) of peach slices during infrared drying. However, sucrose solution with higher concentration (500?g/L) might affect water diffusion, resulting in lower drying rate. The changes of texture characteristics of dehydrated peach were ascribed to sucrose uptake during the impregnation step. The content and constitutes of soluble sugars in peach tissue, which was significantly affected by OD treatment, were also detected in the research. The results indicated that the combined infrared and EPD drying, in which OD with appropriate concentration (300?g/L) was applied as pretreatment, could improve the drying characteristics and texture of peach chips.  相似文献   

20.
Optimization of Osmotic Dehydration of Kiwifruit   总被引:1,自引:0,他引:1  
Mass transfer rates were quantitatively investigated during osmotic dehydration of kiwifruit slices using response surface methodology with the sucrose concentration (20-80%, w/w), temperature of sucrose solution (15-75°C), osmotic time (60-420 min), and slice thickness (2-10 mm) as the independent process variables. Quadratic regression equations are obtained to describe the effects of independent process variables on the water loss (WL), sucrose gain (SG), and ascorbic acid loss (AAL). It was found that all factors had significant effect on the WL during osmotic dehydration of kiwifruit. Effects of temperature, time, and slice thickness were more pronounced on SG than the effect of concentration of sucrose solution. The osmotic solution temperature was the most significant factor affecting the AAL, followed by slice thickness and duration of treatment. The optimal conditions for osmotic dehydration were: 60% sucrose concentration, 30-40°C osmotic temperature, 150 min osmotic time, and 8 mm slice thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号