首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article presents experimental performance of a batch-type longan dryer using a biomass burner with air flow reversal and also presents modeling of the longan dryer for drying of whole longan. The dryer essentially consists of a biomass burner and a drying bin with an arrangement for periodic air flow reversal. Three drying runs with loading capacity of 2,000, 1,500, and 1,000 kg of whole longan were carried out. There was no significant difference in temperatures in different positions (except inlet and outlet) inside the dryer (p < 0.05) or moisture content inside the dryer (p < 0.05). Whole longan was dried from an initial moisture content of 74% (wb) to a final moisture content of 14% (wb). The drying time of whole longan in the longan dryer was 60, 54, and 48 h for 2,000, 1,500, and 1,000 kg loading, respectively. The quality of dried product was also good in comparison to the high-quality product in markets.

To simulate the performance of the longan dryer for drying of whole longan, a set of partial differential equations was developed and the equations were solved using the finite difference technique. The numerical solution was programmed in Compaq Visual FORTRAN version 6.5 (Compaq Computer Corp., TX). The simulated moisture contents agreed well with the experimental data. This model can be used to provide the design data and it is also essential for optimal dryer design.  相似文献   

2.
A lab model vacuum-assisted solar dryer was developed to study the drying kinetics of tomato slices (4, 6, and 8 mm thicknesses) compared with open sun drying under the weather conditions of Montreal, Canada. The drying study showed that the time taken for drying of tomato slices of 4, 6, and 8 mm thicknesses from the initial moisture content of 94.0% to the final moisture content of around 11.5 ± 0.5% (w.b.) was 360, 480, and 600 min in vacuum-assisted solar dryer and 450, 600, and 750 min in open sun drying, respectively. During drying, it was observed that the temperature inside the vacuum chamber was increased to 48°C when the maximum ambient temperature was only 30°C. The quality of tomato slices dried under vacuum-assisted solar dryer was of superior quality in terms of color retention and rehydration ratio. The drying kinetics using thin-layer drying models and the influence of weather parameters such as ambient air temperature, relative humidity, solar insolation, and wind velocity on drying of tomato slices were evaluated.  相似文献   

3.
This paper presents the analysis of a coupled heat and mass transfer process in a fixed-bed solar grain dryer. Measurements of moisture concentration and air humidity along with temperature measurements were carried out in a solar grain dryer located in Port Harcourt, Nigeria, at the latitude of 4.858°N and longitude of 8.372°E. The process was also modelled, mathematically, by a set of partial differential equations that were coupled within the grain and through the grain boundary with the hot drying air. A finite difference scheme was used to obtain the moisture concentration and air humidity, and temperature fields within the grain and drying air. There was good agreement between the theoretical and experimental results at specified Biot and Posnov numbers, and varying Fourier number. The effects of time, space, and key model parameters such as the Biot and Posnov numbers and the initial conditions of the grains and drying air were simulated and discussed. The results from this study can be used to specify the design parameters for solar grain dryers.  相似文献   

4.
EXPERIMENTAL INVESTIGATION ON SOLAR DRYING OF FISH USING SOLAR TUNNEL DRYER   总被引:7,自引:0,他引:7  
This paper presents field level performance of the solar tunnel dryer for drying of fish. The dryer consists of a transparent plastic covered flat plate collector and a drying tunnel connected in series to supply hot air directly into the drying tunnel using four d.c. fans, operated by two 40 watt solar modules. This dryer can be used to dry upto 150 kg of fish and three sets of full scale field level drying runs for drying silver jew (Johnius argentatus) fish were conducted in February-March, 1999. The temperature of the drying air at the collector outlet varied from 35.1 ° C to 52.2 ° C during drying. The fish was initially treated with dry salt and stacked for about 16 hours before drying. The salt treated fish was dried to a moisture content of 16.78% (w.b.) from 67% (w.b.) in 5 days of drying in solar tunnel dryer as compared to 5 days of drying in the traditional method for comparable samples to a final moisture content of 32.84%. In addtion, the fish dried in the solar tunnel dryer was completely protected from rain, insects and dust, and the dried fish was a high quality product.  相似文献   

5.
The novel low-cost band thermodynamic dryer equipped with a solar collector, a parabolic focusing collector, a heat exchanger, screw fan, and a drying cabinet with a band was designed and tested. The maximum temperature in the solar collector reached 85°C, which was 55°C above the ambient temperature. The required drying time was 4.5 h, much reduced from the traditional solar drying time of 48 h. The final moisture content of the Roselle calyx was 12% w.b., which is the recommended storage moisture content. Measurements of ambient temperature and humidity, air temperature, and relative humidity inside the dryer as well as solids moisture loss-in-weight data are employed as a means to study the performance of the dryer. Solar drying was compared with conventional sun drying and heated air drying, using the following evaluation criteria: drying time, dried Roselle color, texture, taste, and production cost. For evaluation, a model-based Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methodology was used. After the evaluation, the proposed continuous solar dryer was found to be better than conventional drying and heated air drying due to slower drying rate and better quality of the dried Roselle.  相似文献   

6.
《Drying Technology》2013,31(7):1357-1368
Abstract

A thin-layer forced air solar dryer was designed to study the feasibility of drying pistachio nuts. The dryer was tested during the 2001 and 2002 drying seasons. The maximum temperature in the solar collector reached 56°C, which was 20°C above the ambient temperature. The required drying time was 36 h. During the first day of drying (0800 to 1700 h) the moisture content dropped to about 21% (wb). The final moisture content of the dried nuts was 6% wb, which was 1% below the recommended storage moisture. The drying constant of the pistachio nuts during solar drying was determined using two mathematical models, a one-term series solution of Fick's diffusion equation and an exponential decaying model. There was no significant difference between the two models (α = 0.05). In general, the quality of solar dried nuts was better than the conventional heated air due to slower drying rates.  相似文献   

7.
A modular solar cabinet dryer equipped with an air collector including a drying chamber with different tray arrangements was developed to determine moisture changes in different sizes and forms (slices and cubes) of apple and carrot pieces and to carry out serial measurements of temperatures, solar radiation, and air humidity distributions during the drying process. The initial and final moisture contents (w.b.) of fresh products were 88 and 26% for apple and 71 and 13% for carrot with initial weights of 1.56 and 3 kg, respectively. The results revealed that the temperature inside the chamber was strongly negatively correlated with air humidity (R2 = 0.91) and that the length of the drying period was influenced by the weather conditions, as the cloudy weather retarded drying of carrots. It was possible to reach an air drying temperature over 41°C with a daily total solar energy incident on the collector's surface of 857.2 kJ/(m2 day) for apples and 753.20 kJ/(m2 day) for carrots. The analysis of energy requirements to remove moisture from apples and carrots during the total drying period showed values of 3300.19 and 7428.28 kJ/kg, respectively. The amount of air to remove water from the samples was also determined as 126.93 m3 for apples and 928.56 m3 for carrots.  相似文献   

8.
A dynamic mathematical model for drying of agricultural products in an indirect cabinet solar dryer is presented. This model describes the heat and mass transfer in the drying chamber and also considers the heat transfer and temperature distribution in a solar collector under transient conditions. For this purpose, using conservation laws of heat and mass transfer and considering the physical phenomena occurring in a solar dryer, the governing equations are derived and solved numerically. The model solution provides an effective tool to study the variation of temperature and humidity of the drying air, drying material temperature, and its moisture content on each tray. The predicted results are compared with available experimental data. It is shown that the model can predict the performance of the cabinet solar dryer in unsteady-state operating conditions well. Furthermore, the effect of some operating parameters on the performance and efficiency of dryer is investigated and compared with selected published data.  相似文献   

9.
The diiffusion model describing internal diiffusion of moisture within a grain kernel during drying and tempering stages was incorporated in the cross-flow drying model to simulate the recirculating circular grain dryer with drying and tempering stages. Experiments were conducted on an experimental prototype recirculating circular grain dryer for wheat and rough rice drying. The simulated grain temperature and moisture content were compared with the experimental data of drying wheat and rough rice, the maximum deviation of the outlet grain temperature was 5°C and the maximum deviation ofthe final grain moisture content was 0.3% w.b. The simulating program for recirculating circular grain dryer was used for analyzing the effects of structure parameters and hot air parameters on the dryer performance. Recommendations for design of the recirculating circular grain dryers are drawn from the experiments and simulation.  相似文献   

10.
K. S. Ong 《Drying Technology》1996,14(10):2411-2417
An experimental investigation was conducted on the performance of a solar box dryer for drying bamboo operating under tropical weather conditions. The dryer is a greenhouse-type designed for multi-crop solar drying. Air circulation was by electrically-operated fan. The results showed that the moisture content of the bamboo could be brought dovn to about 19% from an initial value of nearly 90% in 17 days by operating the dryer over 8 hours each day. under natural drying conditions, the final moisture content reached was only 22%. Although solar drying of bamboo was only marginally faster than natural drying. nonetheless. final moisture content was lower.  相似文献   

11.
K. S. Ong 《Drying Technology》2013,31(10):2411-2417
ABSTRACT

An experimental investigation was conducted on the performance of a solar box dryer for drying bamboo operating under tropical weather conditions. The dryer is a greenhouse-type designed for multi-crop solar drying. Air circulation was by electrically-operated fan. The results showed that the moisture content of the bamboo could be brought dovn to about 19% from an initial value of nearly 90% in 17 days by operating the dryer over 8 hours each day. under natural drying conditions, the final moisture content reached was only 22%. Although solar drying of bamboo was only marginally faster than natural drying. nonetheless. final moisture content was lower.  相似文献   

12.
A solar biomass hybrid air heating system that does not require a conventional auxiliary heater but can still provide a daily load fraction exceeding 90% and supply hot air at a steady temperature and flow rate continuously for 24 h a day has been developed. The system, which combines an unglazed transpired solar collector, rock bed, and a biomass gasifier stove with heat exchanger, was evaluated by drying chilli using air at 60°C and 90 m3/h. The chilli was dried from 76.7% moisture (w.b.) to 8.4% over 32.5 h of continuous drying. The dryer reduced the drying time by 66% compared to open sun drying and provided 91.6% load fraction during the 24-h operation. The temperature of hot air supplied was stable at 60±3°C for about 21 h during the entire drying duration.  相似文献   

13.
An industrial batch-type, tray air dryer constructed for drying of several fruits, was investigated. Momentum, heat and mass transfer regarding both gaseous and solid phases was simulated using computational fluid dynamics. A mathematical model of the dryer for predicting the turbulent, three-dimensional transfer phenomena inside the industrial batch dryer equipment was developed and analyzed. The model consists of the full set of partial differential equations that describe the conservation of mass, momentum and heat inside the dryer. The standard k-ε model was used to describe turbulence in addition to the governing conservation equations. The simulated profiles of flow field, temperature and humidity of the air phase revealed a lack of spatial homogeneity of air conditions above the product. The situation was found to greatly influence the distribution of material moisture content of the dried product for the various stages of drying. The investigation was carried out for the representative case of sultana raisins.  相似文献   

14.
K. S. Ong 《Drying Technology》2013,31(3-4):907-913
ABSTRACT

An experimental investigation use conducted on the performance of a solar box dryer for drying bamboo operating under tropical rearher conditions. The dryer is a greenhouse-type designed for multi-crap solar drying. Air circulation was by electrically-operated fan. The results shoved that the moisture content of the bamboo could be brought down to about 19% from an initial value of nearly 90% in 17 days by operating the dryer over 8 hours each day. Under natural drying conditiona. the final moisture content reached was only 12%. Although eolar drying of bamboo vaa only marginally faster than nacural drying. noncrhelesa. final moisture content was lower.  相似文献   

15.
Pneumatic conveying drying (PCD) is a combination of heat and mass transfer and pneumatic handling technology. This technology has been extensively used in chemical, pharmaceutical, and food industries, as well as many others. The PCD technique is beneficial for agricultural products, because it can achieve high-quality drying with reduced heat damage in a very short time. In this study, one-dimensional and three-dimensional mathematical models for the drying of sawdust particles in a pneumatic dryer were developed and verified with experiments. The three-dimensional modeling was done with a computational fluid dynamics (CFD) package (ANSYS FLUENT, Ver. 13.0, Ansys, Inc.), in which the gas phase is modeled as a continuum using the Euler approach, and the droplet/particle phase is modeled by a discrete phase model with a Lagrange approach. One-dimensional analysis was performed in MATLAB (Ver. 7.0). The experiments were carried out to validate the model in a pneumatic dryer with a horizontal length of 1 m, vertical height of 1.1 m, and diameter of 0.14 m. Sawdust, a raw material used for producing pellets, was prepared from well-seasoned pinewood timber. The initial moisture content of the sawdust was 22% (wb). The hot air inlet temperature in the dryer was fixed at 100°C. The variations in air pressure, air velocity, air temperature, and particle moisture content were investigated along the length of the dryer. The final moisture contents of sawdust and air temperature were reduced by 2% (wb) and 5°C, respectively. The simulated values were in good agreement with the experimental values. The developed model was then employed for the design of a pilot-scale pneumatic dryer (length 7 m and diameter 0.14 m). The final moisture content of the sawdust particles was reduced to 14% (wb) when the dryer length was increased from 1 to 7 m. In addition, the modeling was performed using buffers in the pilot-scale dryers. The use of a buffer noticeably increased the drying efficiency.  相似文献   

16.
A feedback strategy of drying control of mate leaves in a thin-layer conveyor-belt dryer was experimentally evaluated. Moisture content in the discharge of the continuous dryer was controlled by manually adjusting the speed of the moving belt between 3.7 × 10?4 and 15.2 × 10?4 m s?1 for approximately 7200 s in 120 s time steps. The sets of PID controller parameters and manipulated conveyor velocities were computed with a dynamic drying model at conditions identical to those found in the closed-loop experiments. The model is represented by a system of two partial differential equations built by energy and solute mass balances in the solid phase of the dryer. A large set of experimental drying curves and temperature of mate leaves as a function of drying time, in the temperature range from 55 to 130°C, confirmed the reliability of the considered model. Experimental closed-loop responses of discharge moisture content in the presence of disturbances in the feed moisture content (≈ 0.5 ? 1.7 dry basis) and variations in set-point (≈ 0.1 ? 1.0 dry basis) validated the suggested control scheme.  相似文献   

17.
A natural circulation solar dryer for drying products in the form of powder has been developed. It is of modular design and aperture area of one module is 3.34 m2. A new concept of moveable glazing has been introduced for ease in loading and unloading. Air entering the dryer moves in a zig-zag path as it flows over the product and under each tray before leaving from the top. There is a provision to dry the product under shade. Also, the dryer can be dismantled and stored in a room during off-season. The dryer was tested to dry Di-calcium phosphate (DCP) at Ludhiana (31°N). The average drying efficiency for a batch was found to be 54.0%. The cost of drying DCP using this solar dryer was 0.56 Rupees per kg of dried DCP as compared to 1.94 Rupees per kg of dried DCP for a wood-fueled industrial dryer. In comparison to a solar tunnel dryer for DCP drying, the initial investment per kilogram of the dried DCP, floor area per kilogram of wet DCP, and cost of drying per kilogram of dried DCP for this dryer was reduced by 7.1%, 67.2%, and 16.4% respectively.  相似文献   

18.
The objectives of this research were to study the characteristics and quality of longan flesh drying and to develop the models for drying simulations. Finite difference method was applied to solve the drying kinetic equations. Three alternative diffusion models were developed by modifying the Arrhenius factor and/or the energy of activation as a function of moisture content. The results using effective diffusion coefficients obtained from each model were compared. Desorption isotherms were also developed by fitting experimental results to various well-known models. The development and simulation of mathematical drying model of a cabinet dryer were also studied. The effects of drying air temperature and specific air flow rate on specific energy consumption were described. Additionally, the effect of drying air temperature on product quality was investigated by experiment.  相似文献   

19.
《Drying Technology》2013,31(9):2315-2329
The objectives of this research were to study the characteristics and quality of longan flesh drying and to develop the models for drying simulations. Finite difference method was applied to solve the drying kinetic equations. Three alternative diffusion models were developed by modifying the Arrhenius factor and/or the energy of activation as a function of moisture content. The results using effective diffusion coefficients obtained from each model were compared. Desorption isotherms were also developed by fitting experimental results to various well-known models. The development and simulation of mathematical drying model of a cabinet dryer were also studied. The effects of drying air temperature and specific air flow rate on specific energy consumption were described. Additionally, the effect of drying air temperature on product quality was investigated by experiment.  相似文献   

20.
Germination and moisture content loss data were collected of maize with a moisture content ranging from 15 to 32% (w.b.), an air temperature from 40 to 75°C, and an exposure time from 0.5 to 180 minutes.

A germination-retention model was developed based on the normally distributed death-rate theory (NDD). The NDD model was combined with a concurrent-flow (CCF) dryer model, and tested against viability data of maize dried in a commercial two-stage CCF dryer. Acceptable agreement between the predicted and experimental viabilities was obtained.

The effect of the CCF dryer design, and of several operating parameters, on the loss of maize-seed viability was analyzed. Simulation with the NDD-CCF dryer model shows that high quality seed can be produced by drying at air temperatures well above 100°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号