首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
具有预制孔隙的维生素C水溶液微波冷冻干燥   总被引:1,自引:0,他引:1       下载免费PDF全文
张朔  王维  李强强  唐宇佳  董铁有 《化工学报》2019,70(6):2129-2138
设计和组装了一套实验室规模的多功能微波冷冻干燥装置,探究了具有初始孔隙的非饱和物料微波冷冻干燥过程。以维生素C为溶质,采用“软冰”冷冻技术制备了初始饱和与非饱和的冷冻样品。结果表明,软冰冷冻制备的样品能够避免崩塌。在35℃和20 Pa条件下,初始非饱和物料的干燥时间比饱和物料缩短了30.4%。SEM表征显示,非饱和物料具有疏松的球状孔隙结构、连通性好,有利于水蒸气的迁移。采用吸波材料碳化硅辅助的微波加热能够进一步强化冷冻干燥过程。在相同条件下,非饱和物料的微波冷冻干燥(5 W功率)时间比常规冷冻干燥(0 W功率)缩短了28.1%,比饱和物料的常规冷冻干燥缩短了50.0%。吸波材料辅助的初始非饱和物料微波冷冻干燥实现了传热传质的同时强化。  相似文献   

2.
初始非饱和多孔物料对冷冻干燥过程的影响   总被引:8,自引:5,他引:3       下载免费PDF全文
于凯  王维  潘艳秋  王威  陈国华 《化工学报》2013,64(9):3110-3116
提出了“初始非饱和多孔物料冷冻干燥”的思想,从实验上验证具有一定初始孔隙的非饱和多孔物料对液体物料冷冻干燥过程的强化作用。设计、加工和组装了一套实验室规模的多功能冷冻干燥装置。采用“液氮制作冰激凌法”,将以甘露醇为主要溶质的液体物料制备成具有不同初始孔隙的冷冻物料。对于相同质量和相同湿含量的非饱和冷冻物料,在相同的操作条件下,进行冷冻干燥实验,并与常规冷冻干燥相比较。结果表明,初始非饱和物料对冷冻干燥过程确实具有显著的强化作用。非饱和冷冻物料(初始饱和度0.28)的干燥时间比常规冷冻物料(初始饱和度1.00)能够节省36.4%。初始饱和度越小,干燥时间越短,干燥产品的含水率越低。  相似文献   

3.
具有预制孔隙多孔物料的冷冻干燥   总被引:3,自引:1,他引:2       下载免费PDF全文
李恒乐  王维  李强强  陈国华 《化工学报》2016,67(7):2857-2863
实验探究了具有初始预制孔隙多孔物料对冷冻干燥过程的强化作用。以注射用抗生素药剂--头孢曲松钠为主要溶质,采用“液氮制作冰激凌法”制备了具有不同初始孔隙率的冷冻物料,在相同的条件下进行冷冻干燥实验。结果表明,初始饱和度为0.3的冷冻物料(初始孔隙率为0.67)干燥时间比饱和物料(初始孔隙率为0)缩短了21.3%。干燥产品的SEM图显示,初始非饱和冷冻物料的固体骨架和孔隙结构连续而均匀,初始饱和度越低,骨架越纤细,可大大地降低传质阻力。对冷冻速率和退火处理的研究表明,冷冻速率对于两种物料干燥过程的影响甚微;退火处理能够提高冷冻干燥速率。适当提高操作温度可以明显缩短两种物料的干燥时间;操作压力对冷冻干燥过程几乎没有影响。  相似文献   

4.
A new porous media mathematical model for freeze-drying was developed based on the adsorption-desorption relationship proposed in this paper. A finite difference solution was obtained from a moving boundary problem for the dielectric-material-assisted microwave freeze-drying process. Silicon carbide (SiC) was selected as the dielectric material; and frozen skim milk was used as the aqueous solution to be dried. Simulation results showed that the dielectric material can significantly enhance the microwave freeze-drying process. The drying time was 33.1% shorter than that of ordinary microwave freeze-drying under typical operating conditions. When the solid content of the solution to be freeze-dried was very low, or the solid product had a very small loss factor, microwave heating was less effective without the assistance of dielectric material. The mechanisms of heat and mass transfer during drying were analyzed based on profiles of ice saturation, temperature and vapor concentration. Drying rate-controlling factors were discussed. A comparison was made between the model predictions and the reported experimental data.  相似文献   

5.
实验研究了具有一定孔隙的非饱和多孔物料对液体物料冷冻干燥过程的影响。以甘露醇为主要溶质的待干料液采用“液氮制冰激凌法”制备非饱和物料进行冷冻干燥,并与常规饱和的冷冻物料相比较。结果表明,非饱和冷冻物料确实能够显著地强化液体物料的冷冻干燥过程。干燥产品SEM形貌分析显示,初始非饱和冷冻物料具有连续均匀的固体骨架和孔隙,固体基质更加纤细,孔隙空间更大,可以大大减小传质阻力。考察物料内部各点的温度变化发现,初始非饱和物料内部冰晶确实发生整体升华,但仍然存在主要升华区域;非饱和多孔物料的冷冻干燥过程主要是传热控制,而常规饱和物料冷冻干燥主要是传质控制。操作压力对过程的影响可以忽略。采用辐射/导热组合加热方式可改善初始非饱和多孔物料冷冻干燥过程的传热,进一步缩短干燥时间。  相似文献   

6.
《Drying Technology》2013,31(8):1693-1709
Abstract

A mathematical model of multicomponent vacuum desorption, which occurs in vacuum freeze-drying process, was developed. In freeze-drying porous biomaterials and pharmaceuticals are considered and the vacuum freeze-drying process, especially the moisture desorption in its final stage, is investigated. In this article, the drying with conductive heating and constant contact surface temperature was considered. Pressure drop is taken into account in the model formulation but was neglected in process simulation because of thin material layers undergoing freeze-drying. Model equations were solved by numerical method of lines. Moisture content and temperature distributions within the drying material were predicted from the model as a function of drying time.  相似文献   

7.
本研究在作者提出的吸附—解吸平衡关系的基础上,建立了一个全新的考虑吸湿效应的多孔介质冷冻干燥数学模型。模型用有限差分法进行求解,并带有一个移动边界,以模拟介电材料辅助的微波冷冻干燥过程。介电材料选用碳化硅(SiC),原料液为脱脂奶。模拟结果表明:介电材料能够有效强化微波冷冻干燥过程。在典型操作条件下,介电材料辅助的微波冷冻干燥所用的时间比普通微波冷冻干燥减少33.1%。当料液中固体含量较低或者固体产品的损耗因子较小时,介电材料对微波加热的效果不明显。基于冰饱和度、温度和水蒸气浓度的分布,本文分析了干燥过程中的传质传热机理,并对干燥速率控制因素进行了讨论。  相似文献   

8.
J. F. Nastaj  B. Ambro   ek 《Drying Technology》2005,23(8):1693-1709
A mathematical model of multicomponent vacuum desorption, which occurs in vacuum freeze-drying process, was developed. In freeze-drying porous biomaterials and pharmaceuticals are considered and the vacuum freeze-drying process, especially the moisture desorption in its final stage, is investigated. In this article, the drying with conductive heating and constant contact surface temperature was considered. Pressure drop is taken into account in the model formulation but was neglected in process simulation because of thin material layers undergoing freeze-drying. Model equations were solved by numerical method of lines. Moisture content and temperature distributions within the drying material were predicted from the model as a function of drying time.  相似文献   

9.
The main objective of this work is to build a mathematical model that describes heat and mass transfer in freeze-drying when both plate heating and radiation heating are applied and also to provide further understanding of the mechanism of the drying process. The model, unlike other models, may be used for situations in which sublimation occurs within a temperature range, i.e., the non-existence of a sharp interface and also for cases in which more than one interface may form. The developed model has been tested against experimental measurements of freeze-drying of milk under different operating conditions. Measurements were done using Virtis BT3.3ES freeze dryer with vertical manifolds. The milk was contained in a glassware, specially designed for this project. Four thermocouples were fixed at different positions to track the drying progress. The experimental measurements show no significant shrinkage in the frozen milk when dried, leaving the milk highly porous in structure. In this experimental work, the low thermal conductivity of the dried layer was found to control the process without any significant mass transfer resistance. This includes plate heating where drying was found to progress from the heating surface similar to radiation heating. This is unlike what has been reported in some of literature that drying starts always from the top surface. The model, which was based on heat transfer control, showed a reasonable agreement with the experimental measurements of both plate heating and radiation heating.  相似文献   

10.
ABSTRACT

The effect of drying temperature of the black currant juice on the retention of vitamin C and anthocyanins content as well as drying kinetics in the freeze-dried process, has been studied. Non clarified, black currant juice was freered on plates in the layer of 15 mm thick until the temperature of -30 °C in the thermal center of sample has been reached. Plates with frozen layers of juice were subject of freeze-drying process at 5 different temperatures of the heating plate (20, 30. 40, 50 and 60 °C). Studies of the retention of vitamin C and anthocyanins after, drying were carried out. freeze-drying of black currant juice should be carried out at the temperature not higher than 40°C to preserve content of vitamin C and anthocyanins.  相似文献   

11.
吸波材料辅助的液体物料微波冷冻干燥多物理场耦合模型   总被引:1,自引:0,他引:1  
杨菁  王维  张朔  宋春芳  唐宇佳 《化工学报》2019,70(9):3307-3319
为了研究吸波材料辅助微波加热对传统冷冻干燥过程的强化作用,建立了多孔介质温度、浓度和电磁场耦合的多相传递模型;以烧结的碳化硅(SiC)为吸波材料、以甘露醇水溶液为待干料液进行了微波冷冻干燥实验,并测定了甘露醇固体的介电特性。模拟和实验结果均表明,吸波材料对初始非饱和多孔物料微波冷冻干燥具有显著的强化作用。初始非饱和样品微波冷冻干燥时间比传统冷冻干燥缩短了18%,比常规饱和样品传统冷冻干燥缩短了30%。模拟结果与实验数据吻合良好。这表明提出的新型干燥方法确实能够实现过程传热传质的同时强化。通过考察样品内部温度、饱和度和电场强度的实时分布,分析了微波冷冻干燥过程的传热传质和电磁波传播与耗散机理。在微波冷冻干燥过程中,初始非饱和样品累计吸收的辐射能和微波能的总和与传统冷冻干燥相当。这说明,该干燥方法只是提高了能量效率,从而大幅缩短了冷冻干燥时间。  相似文献   

12.
《Drying Technology》2013,31(6):995-1017
Abstract

The dielectric material assisted microwave freeze-drying was investigated theoretically in this study. A coupled heat and mass transfer model was developed considering distributions of the temperature, ice saturation and vapor mass concentration inside the material being dried, as well as the vapor sublimation-desublimation in the frozen region. The effects of temperature and saturation on the effective conductivities were analyzed based on heat and mass flux equations. The model was solved numerically by the variable time-step finite-deference technique with two movable boundaries in an initially unsaturated porous sphere frozen from an aqueous solution of mannitol. The sintered silicon carbide (SiC) was selected as the dielectric material. The results show that dielectric material can significantly enhance microwave freeze-drying process. For case of the dielectric field strength, E = 4000 V/m under typical operating conditions, the drying time is 2081 s, 30.1% shorter and 47.2% longer, respectively, than those for E = 2000V/m and E = 6000 V/m. The heat and mass transfer mechanisms during the drying process were discussed.  相似文献   

13.
Abstract

The dynamic behavior of conveyor-belt dryers involving externally controlled heat and mass transfer phenomena has been studied via digital simulation. The investigation concerned an industrial dryer used for the moisture removal from wet raisins. The dryer consisted of three drying chambers and a cooling section, all involving the same conveyor belt. For each chamber, perfect temperature control was assumed for the drying air temperature, while its humidity was left uncontrolled. The effect of material temperature and moisture content at the entrance of the dryer and the drying air temperature on material temperature and moisture content at the exit of the dryer and the corresponding drying air humidity, have been explored by step forcing the disturbance and manipulated variables in the non-linear dryer model simulator. Results showed that material moisture content at the exit of the dryer is greatly affected by material moisture content at the entrance as well as by the drying air temperature. Reliable transfer functions for each process module were obtained by fitting several transfer function models on the simulated data using a least-squares approach. It was found that when input material moisture content could be instantly measured, the system responded slowly enough so that excellent control could be achieved for material moisture content at the exit of each chamber. In this case a Pi-feedback cascade temperature controller was used. When a 15 sec delay measuring sensor was introduced, poor performance was observed. A simplified lead-lag feedforward controller, added to the system, in conjunction with the primary Pi-feedback cascade controller, resulted in good control performance of the delay sensor system.  相似文献   

14.
冷冻干燥过程强化中冷冻阶段优化的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
张朔  王维  李一喆  唐宇佳  刘楠 《化工进展》2020,39(8):2937-2946
冷冻干燥产品质量高,但时间长、能耗高。本文综述了冷冻干燥过程强化中冷冻阶段的优化方法,控制冷冻速率、调节冰晶成核和退火处理可以获得大而均匀的冰晶从而提高升华干燥阶段速率,但物料内部比表面积的减小会降低解吸干燥阶段速率,这类常规的冷冻阶段优化方法对弱吸湿性的物料有一定的强化效果。有机溶剂具有较高的蒸气压,作为共溶剂时可以增加传质推动力,但较低的有机溶剂残留量要求阻碍了其进一步应用。“初始非饱和多孔介质冷冻干燥”的技术思想是将液体物料首先制备成具有一定初始孔隙的冷冻物料,然后再进行冷冻干燥。物料具有的初始孔隙为水蒸气的迁移提供了便捷的通道,而且纤薄的固体基质也有利于结合水的解吸,可以同时强化升华干燥阶段和解吸干燥阶段。该技术思想是过程低消耗和产品高质量的完美结合,为解决冷冻干燥过程速率低的问题提供了新的方案。  相似文献   

15.
Abstract

Vacuum freeze-drying (VFD) is a dehydration method based on the sublimation of the liquid phase contained in a certain product, previously frozen, at low pressure and temperature. Since it is a time and energy consuming process, it is crucial to select the best processing conditions to minimize drying duration, thus reducing the energy requirement. Additionally, product temperature must be monitored since it plays an important role in preserving product quality. The aim of this study was to develop a Diffuse Interface Model (DIM) for in-silico simulation of the freeze-drying process of individually frozen products. Due to the geometrical features of the samples, and to the role of radiation in the heat transfer to the product, the usual one-dimensional approach is inappropriate. Using a DIM, each cell of the computational domain can be described as a porous solid matrix filled by ice and vapor with a time-varying composition, thus allowing the use of a fixed computational grid and making the computation effort less demanding in comparison to moving interface-based models. Drying of eggplant cubic samples was considered as case study: model parameters were estimated by fitting the experimentally measured product temperature and drying time to the calculated ones. The model was proven to be reliable in providing an accurate estimate of both the drying time and the product temperature. Therefore, it can be used for off-line process design and optimization, minimizing the experimental effort required to design and optimize the process.  相似文献   

16.
The dielectric material assisted microwave freeze-drying was investigated theoretically in this study. A coupled heat and mass transfer model was developed considering distributions of the temperature, ice saturation and vapor mass concentration inside the material being dried, as well as the vapor sublimation-desublimation in the frozen region. The effects of temperature and saturation on the effective conductivities were analyzed based on heat and mass flux equations. The model was solved numerically by the variable time-step finite-deference technique with two movable boundaries in an initially unsaturated porous sphere frozen from an aqueous solution of mannitol. The sintered silicon carbide (SiC) was selected as the dielectric material. The results show that dielectric material can significantly enhance microwave freeze-drying process. For case of the dielectric field strength, E = 4000 V/m under typical operating conditions, the drying time is 2081 s, 30.1% shorter and 47.2% longer, respectively, than those for E = 2000V/m and E = 6000 V/m. The heat and mass transfer mechanisms during the drying process were discussed.  相似文献   

17.
《Drying Technology》2013,31(1-2):33-57
Abstract:

The problem of operating freeze drying of pharmaceutical products in vials loaded on trays of freeze dryer to obtain a desired final bound water content in minimum time is formulated as an optimal control problem. Two different types of freeze dryer designs were considered. In the type I freeze dryer design, upper and lower plate temperatures were controlled together, while in the type II freeze dryer design, upper and lower plate temperatures were controlled independently. The heat input to the material being dried and the drying chamber pressure were considered as control variables. Only the scorch temperature was considered as a constraint on the system state variables during the secondary drying stage, because all the free water content (frozen water) is removed from the solid matrix during the primary drying stage of freeze drying. Necessary conditions of optimality for the secondary drying stage of freeze drying process in vials were derived and presented by using rigorous multidimensional unsteady-state mathematical models. The theoretical approach presented in this work was applied in the freeze drying of skim milk. Significant reductions in drying times of the secondary drying stage of the freeze drying process in vials were observed and more uniform bound water and temperature distributions in the material being dried were obtained compared to the conventional operational policies.  相似文献   

18.
Wei Wang 《Drying Technology》2013,31(9-11):2147-2168
Abstract

A mathematic model of simultaneous heat and mass transfer for the dielectric material assisted microwave freeze-drying was derived and solved numerically using the finite-deference technique with two moving boundaries. Lactose, a typical pharmaceutical excipient, was used as the representative solid material in the aqueous solution to be freeze-dried. Silicon carbide (SiC) was selected as the dielectric material. Numerical results show that the dielectric material can significantly enhance the microwave freeze-drying process. Under typical operating conditions, the drying time is 43% shorter than that of ordinary microwave freeze-drying. Temperature variations at sublimation fronts were examined in order to determine the appropriate microwave power input. Profiles of temperature, ice saturation, vapor concentration, and pressure during freeze-drying are presented, and rate-controlling mechanisms are discussed.  相似文献   

19.
《Drying Technology》2013,31(1-2):317-340
Abstract:

A simultaneous heat and mass transfer model of the dielectric material–assisted microwave freeze drying was derived in this study considering the vapor sublimation-desublimation in the frozen region. The mathematical model was solved numerically by using the finite-difference technique with two moving boundaries. Silicon carbide (SiC) was selected as the dielectric material, and the skim milk was used as the representative solid material in the aqueous solution to be freeze-dried. The results show that the dielectric material can significantly enhance the microwave freeze drying process. The drying time is greatly reduced compared to cases without the aid of the dielectric material. Profiles of the temperature, ice saturation, vapor concentration, and pressure during freeze drying were presented. Mechanisms of the heat and mass transfer inside the material sphere were analyzed. For an initially unsaturated frozen sample of 16 mm in diameter with a 4-mm-diameter dielectric material core, the drying time is 288.2 min, much shorter than 380.1 min of ordinary microwave freeze drying and 455.0 min of conventional vacuum freeze drying, respectively, under typical operating conditions.  相似文献   

20.
具有预制孔隙多孔介质冷冻干燥的多相传递模型   总被引:2,自引:0,他引:2       下载免费PDF全文
基于局部质量非平衡假设,建立了多相多孔介质热、质耦合传递数学模型,理论验证具有预制孔隙的初始非饱和多孔物料对冷冻干燥过程的强化作用。模型考虑了多孔介质的吸湿效应,构建了3种吸附-解吸平衡关系。模型使用基于有限元法的COMSOL Multiphysics软件平台数值求解,并与实验数据进行了比较。结果表明,初始非饱和冷冻物料能够有效地强化冷冻干燥过程。采用不同函数形式的吸附-解吸平衡关系模拟的干燥曲线均与实验数据非常吻合。通过分析物料内部的饱和度、温度和质量源分布,探讨了初始非饱和物料冷冻干燥过程的传热传质机理。初始非饱和物料的干燥速率控制因素主要是传热。模拟考察环境辐射温度对冷冻干燥过程影响的结果表明,所建模型具有良好的预测能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号