首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pneumatic drying is a widely used process in the chemical industries and includes simultaneous conveying and heat and mass transfer between the particles and the heat gas. The increase in the use of this unit operation requires reliable mathematical models to predict processes in the industrial facilities. In the present study a Two-Fluid model has been used for modeling the flow of particulate materials through pneumatic dryer. The model was solved for a two-dimensional steady-state condition and considering axial and radial profiles for the flow variables. A two-stage drying process was implemented. In the first drying stage, heat transfer controls evaporation from the saturated outer surface of the particle to the surrounding gas. At the second stage, the particles were assumed to have a wet core and a dry outer crust; the evaporation process of the liquid from a particle is assumed to be governed by diffusion through the particle crust and by convection into the gas medium. As evaporation proceeds, the wet core shrinks while the particle dries. The numerical procedure includes discretization of calculation domain into torus-shaped final volumes, solving conservation equations by implementation of the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm and controls over coupling of phases by IPSA (Interphase Slip Algorithm). The developed model was applied to simulate a drying process of wet PVC particles in a large-scale pneumatic dryer and to a drying process of wet sand in a laboratory-scale pneumatic dryer. The numerical solutions are compared successfully with the results of independent numerical and experimental investigations. Following the model validation, the two-dimensional distributions of the flow characteristics were examined.  相似文献   

2.
《Drying Technology》2013,31(9):1645-1668
Abstract

Pneumatic drying is a widely used process in the chemical industries and includes simultaneous conveying and heat and mass transfer between the particles and the heat gas. The increase in the use of this unit operation requires reliable mathematical models to predict processes in the industrial facilities. In the present study a Two-Fluid model has been used for modeling the flow of particulate materials through pneumatic dryer. The model was solved for a two-dimensional steady-state condition and considering axial and radial profiles for the flow variables. A two-stage drying process was implemented. In the first drying stage, heat transfer controls evaporation from the saturated outer surface of the particle to the surrounding gas. At the second stage, the particles were assumed to have a wet core and a dry outer crust; the evaporation process of the liquid from a particle is assumed to be governed by diffusion through the particle crust and by convection into the gas medium. As evaporation proceeds, the wet core shrinks while the particle dries. The numerical procedure includes discretization of calculation domain into torus-shaped final volumes, solving conservation equations by implementation of the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm and controls over coupling of phases by IPSA (Interphase Slip Algorithm). The developed model was applied to simulate a drying process of wet PVC particles in a large-scale pneumatic dryer and to a drying process of wet sand in a laboratory-scale pneumatic dryer. The numerical solutions are compared successfully with the results of independent numerical and experimental investigations. Following the model validation, the two-dimensional distributions of the flow characteristics were examined.  相似文献   

3.
Two-dimensional computational fluid dynamics calculations for multistage zeolite drying are performed for two dryer configurations (1) a continuous moving bed zeolite dryer and (2) a discrete bed zeolite dryer. The calculations concern drying of tarragon (Artemisia dracunculus L.) as an herbal product. The results reveal the profiles of water, vapor, and temperature in dryer, adsorber, and regenerator in the flow directions. The thermal efficiency ranges between 80 and 90% and is close to overall model calculations. The performance of continuous moving bed zeolite dryer is the best. Residence time of air, product, and zeolite are in accordance to other drying systems.  相似文献   

4.
Two-dimensional computational fluid dynamics calculations for multistage zeolite drying are performed for two dryer configurations (1) a continuous moving bed zeolite dryer and (2) a discrete bed zeolite dryer. The calculations concern drying of tarragon (Artemisia dracunculus L.) as an herbal product. The results reveal the profiles of water, vapor, and temperature in dryer, adsorber, and regenerator in the flow directions. The thermal efficiency ranges between 80 and 90% and is close to overall model calculations. The performance of continuous moving bed zeolite dryer is the best. Residence time of air, product, and zeolite are in accordance to other drying systems.  相似文献   

5.
Due to the increasing pressure to eradicate solid waste generation, research efforts should be directed toward reducing the volume and increasing the heat value of wastewater treatment sludges with cost-effective and environmentally viable methods. Thus, the potential drying and simultaneous fractionation of deinking sludge was investigated using a high-velocity pilot cyclone dryer. The sludge was processed with an input rate of approximately 500 kg h?1 leading to an increase in the solid content from 67.9 to 96.3–98.9%, indicating very efficient moisture removal. Although the scanning electron microscope (SEM) images supported the removal of fiber/particle adhesion in the processed samples, the process was not effective enough to separate sludge fibers and mineral particles. Additional fractionation would thus be needed to increase the utilization potential of the dried sludge streams.  相似文献   

6.
An impinging stream dryer (ISD) belongs to a unique class of dryers that has proved to be an excellent alternative to flash dryers for removing surface moisture of particulate materials due to the collision of streams and particles in the dryer. However, the performance analysis of such devices, from a viewpoint of mathematical modeling, has not been investigated extensively. In this study, a mathematical model based on the direct simulation Monte Carlo (DSMC) method is proposed to describe the drying process of particulate materials in a coaxial ISD. The collisions between particles and the heat exchange between impacting particles are included in the present mathematical model. The predicted results were in good agreement with the experimental data, which indicates the validity of the present model. The drying process and the effects of various parameters, including the feeding mode and impinging distance, on the drying performance of the dryer were then numerically investigated and discussed.  相似文献   

7.
This article presents the findings of a numerical simulation model of the spray-drying process in a two-stage horizontal chamber design with the aid of a computational fluid dynamic (CFD) model. The model describes heat, mass, and momentum transfer between two phases; namely, a continuous gas phase and a discrete phase of droplets (or particles), using the finite volume method. In this study, a new two-dimensional horizontal spray dryer (HSD) geometry is considered as a pilot study into the spray-drying process in this novel chamber configuration. The tested model is able to predict some important features of the spray-drying process, such as air flow patterns indicating recirculation zones and particle trajectory plots. Some performance parameters for spray drying, such as the rate of evaporation, average volumetric heat and mass transfer rates, etc., are calculated and discussed. This two-stage drying process especially applicable for the horizontal spray dryer (HSD) model is investigated and modeled. The bottom wall of the HSD is assumed to be a shallow fluid bed used for second stage drying. In this article, the fluid bed drying conditions are changed and compared. The drying within the fluid bed itself is not modeled in this study, however. It is shown that the particle residence time is higher when the fluid bed is included. The drying performance of this two-stage horizontal spray dryer is expected to be better than that of a single-stage dryer.  相似文献   

8.
This article presents the findings of a numerical simulation model of the spray-drying process in a two-stage horizontal chamber design with the aid of a computational fluid dynamic (CFD) model. The model describes heat, mass, and momentum transfer between two phases; namely, a continuous gas phase and a discrete phase of droplets (or particles), using the finite volume method. In this study, a new two-dimensional horizontal spray dryer (HSD) geometry is considered as a pilot study into the spray-drying process in this novel chamber configuration. The tested model is able to predict some important features of the spray-drying process, such as air flow patterns indicating recirculation zones and particle trajectory plots. Some performance parameters for spray drying, such as the rate of evaporation, average volumetric heat and mass transfer rates, etc., are calculated and discussed. This two-stage drying process especially applicable for the horizontal spray dryer (HSD) model is investigated and modeled. The bottom wall of the HSD is assumed to be a shallow fluid bed used for second stage drying. In this article, the fluid bed drying conditions are changed and compared. The drying within the fluid bed itself is not modeled in this study, however. It is shown that the particle residence time is higher when the fluid bed is included. The drying performance of this two-stage horizontal spray dryer is expected to be better than that of a single-stage dryer.  相似文献   

9.
Closed-loop drying systems are an attractive alternative to conventional drying systems because they provide a wide range of potential advantages. Consequently, type of drying process is attracting increased interest. Rotary drying of wood particles can be assumed as an incorporated process involving fluid–solid interactions and simultaneous heat and mass transfer within and between the particles. Understanding these mechanisms during rotary drying processes may result in determination of the optimum drying parameters and improved dryer design. In this study, due to the complexity and nonlinearity of the momentum, heat, and mass transfer equations, a computerized mathematical model of a closed-loop triple-pass concurrent rotary dryer was developed to simulate the drying behavior of poplar wood particles within the dryer drums. Wood particle moisture content and temperature, drying air temperature, and drying air humidity ratio along the drums lengths can be simulated using this model. The model presented in this work has been shown to successfully predict the steady-state behavior of a concurrent rotary dryer and can be used to analyze the effects of various drying process parameters on the performance of the closed-loop triple-pass rotary dryer to determine the optimum drying parameters. The model was also used to simulate the performance of industrial closed-loop rotary dryers under various operating conditions.  相似文献   

10.
The objective of the present work is to find the possibility of reducing the high initial moisture content of wet paddy using a small-scale, low-cost pneumatic conveying dryer that can be provided for each farming household. The dryer without a cyclone equipped at the exit of the dryer is studied and the data obtained from this system is compared with those obtained previously from the dryer with a cyclone. Parametric effects of the following variables are examined: velocity of drying air from 20 to 30 m/s, feed rate of rough rice from 150 to 350 kg/h, and drying air temperature from 35 to 70°C. From the experimental results it is found that the drying process with and without a cyclone are able to lead to very rapid drying without any grain quality problems such as cracks in the rice kernel. For the same experimental conditions, the cyclone-equipped dryer gives around 1% higher decrease of moisture content, 2°C higher average surface temperature of paddy, 3-4% higher average percentage of head rice yield, and 2 kg/h higher average evaporation rate. However, the energy consumption per evaporated mass of water is 20-30% lower than the non-cyclone-equipped dryer.  相似文献   

11.
The objective of the present work is to find the possibility of reducing the high initial moisture content of wet paddy using a small-scale, low-cost pneumatic conveying dryer that can be provided for each farming household. The dryer without a cyclone equipped at the exit of the dryer is studied and the data obtained from this system is compared with those obtained previously from the dryer with a cyclone. Parametric effects of the following variables are examined: velocity of drying air from 20 to 30 m/s, feed rate of rough rice from 150 to 350 kg/h, and drying air temperature from 35 to 70°C. From the experimental results it is found that the drying process with and without a cyclone are able to lead to very rapid drying without any grain quality problems such as cracks in the rice kernel. For the same experimental conditions, the cyclone-equipped dryer gives around 1% higher decrease of moisture content, 2°C higher average surface temperature of paddy, 3–4% higher average percentage of head rice yield, and 2 kg/h higher average evaporation rate. However, the energy consumption per evaporated mass of water is 20–30% lower than the non-cyclone-equipped dryer.  相似文献   

12.
The drying behavior of a single rice kernel subjected to convective drying was analyzed numerically by solving heat and moisture transfer equations using a coupled computational fluid dynamics (CFD) and diffusion model. The transfer coefficients were computed simultaneously with the external flow field and the internal diffusive field of the grain. The model was validated using results of a thin-layer drying experiments from the literature. The effects of velocity and temperature of the drying air on the rice kernel were analyzed. It was found that the air temperature was the major variable that affected the drying rate of the rice kernel. The initial drying rates (in first 20 min) were 7, 12, and 19% per hour at inlet air temperatures of 30, 45, and 60 ° C, respectively. Important temperature gradients within the grain existed only in the first few minutes of the drying process. The moisture content gradients reached a maximum value of 11.7% (db) mm ?1 at approximately 45 min along the short axis in the thickness direction. The variation in the inlet air velocity showed a minor effect on the drying rate of the rice kernel. The heat and mass transfer coefficients varied from 16.57 to 203.46 W·m ?2·K ?1 and from 0.0160 to 0.1959 m·s ?1, respectively. The importance of the computation of the transfer coefficients with the heat and mass transfer model is demonstrated.  相似文献   

13.
In the present study, an innovative method for an accurate simulation and design of a chamber dryer used in the brick/ceramic industry has been proposed. A thorough investigation of currently used dryers is conducted and optimization criteria are detected and discussed. Three-dimensional modeling of the chamber dryer has been performed. In the second step, from the result of 3D modeling, the critical values for heat transfer coefficient are obtained. The governing equations for a two-dimensional brick as a porous solid are derived by combining conservation laws and Fourier's law for heat conduction and Darcy's and Fick's laws for mass diffusion in porous material. The set of partial differential equations governing heat and mass transport in a single brick together with the respective temperature and humidity boundary conditions have been solved numerically based on finite difference method. Finally, an efficient scheme for the air circulation devices, inlet air temperature and humidity, burner characteristics, flow rates, and drying process control have been proposed for a typical industrial-scale brick dryer.  相似文献   

14.
In the interests of competitiveness, manufactures of tumble dryers are seeking to reduce both their electricity use and the drying time. This study examines how the cylinder volume of the compressor and the total heat transfer of the condenser influence the drying time and electricity use in a heat pump tumble dryer. A transient simulation model was developed and compared to an experimental set-up with good similarity. The simulations show that increasing the cylinder volume of the compressor by 50% decreases the drying time by 14% without using more electricity.  相似文献   

15.
针对污泥的特性及其干燥机理,对现有桨叶式干燥机的结构进行改进设计,使现有的桨叶式干燥机成为一种比较理想的污泥干化设备。  相似文献   

16.
17.
《Drying Technology》2013,31(6):957-978
Abstract

A computational fluid dynamic study was carried out to investigate airflow pattern, temperature, and humidity profile at different levels in the drying chamber. Good agreement was obtained with published experimental data. The effects of operating pressure, heat loss from the chamber wall and inlet air conditions on the gas flow pattern, droplet trajectories, and overall dryer performance also were investigated. Results are presented and discussed in terms of the gas velocity, temperature, and humidity profiles within the chambers. The volumetric evaporation values, heat transfer intensity, and thermal energy consumption per unit evaporation rate were computed and compared for drying of a 42.5% solids solution in a spray chamber 2.215 m in diameter with a cylindrical top section 2.005 m high and a bottom cone 1.725 m high. Wall regions subject to formation of undesirable deposits are also identified.  相似文献   

18.
A computational fluid dynamic study was carried out to investigate airflow pattern, temperature, and humidity profile at different levels in the drying chamber. Good agreement was obtained with published experimental data. The effects of operating pressure, heat loss from the chamber wall and inlet air conditions on the gas flow pattern, droplet trajectories, and overall dryer performance also were investigated. Results are presented and discussed in terms of the gas velocity, temperature, and humidity profiles within the chambers. The volumetric evaporation values, heat transfer intensity, and thermal energy consumption per unit evaporation rate were computed and compared for drying of a 42.5% solids solution in a spray chamber 2.215 m in diameter with a cylindrical top section 2.005 m high and a bottom cone 1.725 m high. Wall regions subject to formation of undesirable deposits are also identified.  相似文献   

19.
A new dryer construction has been developed for drying biomass basic materials for energy purposes (straw, sawdust, and other light granular materials). As a result of its simple design, the machine is perfectly suitable for reducing moisture by heat transfer. Compared to the machine types applied thus far, this new construction provides a better ratio of dryer floor space and drying distance and, as a result, a longer drying time. A differential equation system for convection drying was applied for the thermal modeling of the equipment; the mathematical model produced on the basis there of is suitable for examining the heat and mass transfer processes within the dryer. In the course of experimental measurements performed in an industrial size apparatus, the temperature and moisture content of the drying gas were recorded with the initial and final moisture content and surface temperature of the product. The measured values were compared to the results of calculations using the mathematical model.  相似文献   

20.
CFD 在食品干燥过程及其干燥设备设计中的应用   总被引:1,自引:0,他引:1  
CFD是通过计算机数值计算和图像显示以定量描述流场的数值解,从而对物理问题进行分析研究。CFD兼有理论性和实践性的双重特点,其主要用途是对流态进行数值仿真模拟计算,能够对流态的温度场、速度场、浓度场等进行有效的指导和预测。本文综述了CFD数值模拟在食品干燥过程中以及干燥设备设计中的应用和发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号