首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Through-air drying is commonly used in the drying of high-quality tissue and towel products. A representative elementary volume method was used to model the fluid flow and heat and mass transfer during through drying in heterogeneous porous biobased materials such as tissue and towel products. Results of flow both upstream and downstream of a modeled porous sheet allowed visualization of the effects of mixing at the top and bottom of the porous medium. The effect of initial nonuniformity on fluid flow and convective heat and mass transfer in heterogeneous porous media was studied. The effect of material nonhomogeneity and associated transport properties on moisture content of the porous material as a function of drying time was studied. Modeling results indicate that for the first time it is possible to simulate the effect of nonuniformity on fluid flow and convective heat and mass transfer in porous media during through-air drying of paper. Moisture and structural nonuniformity contributing to nonuniformity in air flow might contribute significantly to drying nonuniformity. Depending on the moisture regimes and degree of saturation of the convective medium, heat and mass transfer coefficients may have varying effects on the overall drying.  相似文献   

2.
An experimental setup was developed to study the through air–drying characteristics of permeable grades such as tissue and towel under commercially relevant conditions of basis weight, airflow rate, temperature, and humidity conditions. The experimental setup is capable of evaluating the transient fluid flow, heat, and mass transfer characteristics of relatively larger samples (TAPPI standard hand sheets; 0.1524 m) and is capable of studying the effect of local heterogeneity and structure on convective heat and mass transfer. The system is capable of airflow rates of 0.5–10 m/s with corresponding high-speed data collection and acquisition for measuring important variables such as exhaust air humidity. To study the effect of nonuniformity, local temperature and velocity profiles can also be measured using grid of thermocouples and hot wire anemometers. The instantaneous drying rate and airflow characteristics during through air drying was measured and dry permeability, wet permeability, and convective heat and mass transfer characteristics were then calculated. The experimental results were verified by comparing with the results from literature. Typical experimental results were presented to show the effect of sheet basis weight, initial moisture content, and airflow rates on the drying characteristics for two different types of paper samples.  相似文献   

3.
Volume-averaging techniques developed for modeling drying processes in porous materials offer a convenient framework for analyzing vapor sorption in porous hygroscopic polymeric materials. Because of the large temperature changes associated with water vapor sorption in these materials (from 10° to 20°C), sorption/diffusion processes are best characterized through the coupled differential equations describing both the transport of energy and mass through the porous structure. Experimental and numerical results are compared for a variety of natural and man-made porous polymeric materials (textiles) using the volume-averaging technique. Boundary heat and mass transfer coefficients and assumptions about thermal radiative properties of the experimental apparatus are shown to influence results obtained with the numerical solution method. © 1997 John Wiley & Sons, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  • J Appl Polym Sci 64: 493–505, 1997  相似文献   

    4.
    A MATHEMATICAL MODEL FOR DRYING OF SHRINKING MATERIALS   总被引:2,自引:0,他引:2  
    A mathematical model has been developed to describe heat and mass transfer within materials undergoing shrinkage during drying. Both heat and mass transfer equations are solved simultaneously using a numerical technique A beat pump dryer has been used to conduct experiments to validate the model. Several samples were placed in the drver and after the commencement of each drying test one sample was taken oat at rceular time interval: The bone-dry mass of each piece was also determined. This enables to determine moisture distribution within the materials. Temperatures at different locations of the material were measured with thermocouples. The predicted temperature and moisture distribution within the material agreed fairly well with the experimental results.  相似文献   

    5.
    ABSTRACT

    A mathematical model has been developed to describe heat and mass transfer within materials undergoing shrinkage during drying. Both heat and mass transfer equations are solved simultaneously using a numerical technique A beat pump dryer has been used to conduct experiments to validate the model. Several samples were placed in the drver and after the commencement of each drying test one sample was taken oat at rceular time interval: The bone-dry mass of each piece was also determined. This enables to determine moisture distribution within the materials. Temperatures at different locations of the material were measured with thermocouples. The predicted temperature and moisture distribution within the material agreed fairly well with the experimental results.  相似文献   

    6.
    ABSTRACT

    Aiming at the problem of multilayer physical structure for the skeleton of porous media, a multiscale and multilayer structural model of heat and mass transfer processes for drying of grain packing porous media was established by applying the pore network method and multiscale theory. An experimental study on rice drying was conducted in order to validate this model. The simulation and experimental results indicated that the established model could explain the mechanical properties of rice drying well. The rate of heat transfer was faster than the rate of mass transfer and there was a higher moisture gradient inside the rice grain. The diffusion coefficient of rice embryo played an important role in the drying process, and whose effect on drying was larger than the diffusion coefficient of rice hull and chaff. The moisture was imprisoned effectively inside the rice when the diffusion coefficient of rice embryo was very small.  相似文献   

    7.
    Drying process plays an important role in the manufacturing of many products such as ceramic, kitchenware and building materials, some of which have complex three‐dimensional (3D) geometry. To deal with many restrictions found in literatures, a 3D numerical approach was used to describe the drying process of a porous Clay‐like material. The problem investigated involves highly coupled equations considering heat, mass, and mechanical aspects. The model is validated through the comparison of experimental measurements with simulation result. Simulation results show that increasing the initial moisture content and reducing the initial temperature have the same privilege and without significant increase in drying time, it reduces slightly the amount of maximum stress but delays the occurrence time of maximum stress. The nonuniform heat expansion induced stresses are very small in comparison to nonuniform moisture shrinkage induced stresses and can be neglected in drying simulation. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1469–1478, 2018  相似文献   

    8.
    The heat and mass transfer models applicable to biological products at each element in a far-infrared fixed-bed dryer were established. The model was validated by comparing the simulation results with experimental data of black mushrooms (Lentinus edodes) in terms of moisture content and drying rate. The very good agreement suggests that the models for heat transfer and drying rate of biological products in the far-infrared fixed-dryer can be obtained by establishing the equations of radiation and dehydration in interspace elements. An unevenness of change in moisture content and drying rate on the same horizontal layer in the dryer was found. Thus it is necessary to take some measures to solve this nonuniformity in drying if the proposed dryer is employed.  相似文献   

    9.
    To study unsteady state problems of heat and mass transfer in concrete pavements, which are generally considered to be fine porous media, both relevant material characteristics and transport properties must be considered simultaneously. A system of nondimensional differential equations for heat and mass transfer in porous media is derived and used to investigate the drying history of moisture content in a particular light-weight concrete slab. An implicit finite difference numerical scheme is employed for obtaining the numerical results. The results show that the Lewis number Le, Bih number Bim play an essential role in the simultaneous mass and heat transfer.  相似文献   

    10.
    多孔介质对流干燥机理及其模型   总被引:6,自引:1,他引:5       下载免费PDF全文
    张浙  杨世铭 《化工学报》1997,48(1):52-59
    在对现有的多孔介质对流干燥传热、传质模型归类分析的基础上,从介质内部热湿迁移机制出发,建立了能较完善、较准确地描述多孔介质在恒速段及降速段热质传递规律的“三耦合-六场量”混合理论模型.同时针对干燥问题数值模拟中的移动边界问题,提出了一种迭代修正的思想,并发展了相应的数值计算方法.对砖的干燥模拟计算结果表明,本文的模型较其他模型具有更好的精确性.  相似文献   

    11.
    《Drying Technology》2013,31(4):809-820
    Abstract

    The heat and mass transfer models applicable to biological products at each element in a far-infrared fixed-bed dryer were established. The model was validated by comparing the simulation results with experimental data of black mushrooms (Lentinus edodes) in terms of moisture content and drying rate. The very good agreement suggests that the models for heat transfer and drying rate of biological products in the far-infrared fixed-dryer can be obtained by establishing the equations of radiation and dehydration in interspace elements. An unevenness of change in moisture content and drying rate on the same horizontal layer in the dryer was found. Thus it is necessary to take some measures to solve this nonuniformity in drying if the proposed dryer is employed.  相似文献   

    12.
    王朝晖  施明恒 《化工学报》1997,48(3):294-299
    以非饱和含湿牛肉为例,进行了微波冷冻干燥实验研究。获得了干燥时间与物料初始饱和度近似成正比的结论。与升华面模型的计算结果比较表明,升华冷凝模型更符合实验规律,证实了非饱和含湿多孔介质微波冷冻干燥时升华冷凝区的存在。  相似文献   

    13.
    14.
    15.
    Free heat and mass transfer during drying in a porous enclosure with free vents has been investigated numerically. Enclosed moist air interacts with the surrounding air through freely vented ports situated on both sides perpendicular to the heated wall. Air, heat, and moisture transport structures are visualized respectively by streamlines, heat lines, and mass lines. Effects of thermal Rayleigh number, Darcy number, vent location, and enclosure inclination on the convective heat/moisture transfer rate and volume flow rate across this enclosure are discussed. For each case, partially enclosed fluid flow undergoes different phases, increasing with buoyancy ratio; that is, heat transfer–driven flow, heat- and moisture-aided flow, and moisture transfer–dominated flow. Numerical results demonstrate that the convective heat and moisture transport patterns and transport rates greatly depend on thermal Rayleigh number, properties of porous medium, and enclosure inclination. Practices for enhancing heat and moisture transfer have been suggested for drying processes.  相似文献   

    16.
    A simulation model for convective drying of wet porous materials was developed. For the simulation, we measured the moisture diffusivities within them and applied a modified Dubinin-Astakhov equation to the moisture sorption data for a membrane filter. The simulation results not accounting for internal mass transfer resistance were quite different from the experimental ones. The drying characteristics calculated by a shrinking core model with effective moisture diffusivity represented a much lower drying rate and much higher temperatures, respectively, than the experimental ones. This meant that we must consider the plural moisture transport mechanisms within the samples. Therefore, we calculated the drying rate and temperatures with an apparent overall mass transfer coefficient damping with a decrease in the moisture content. The results accounting for the hygroscopic effects broadly agreed with the experimental ones by the evaluation.  相似文献   

    17.
    This article presents one-dimensional numerical analysis of heat-mass transport and pressure build-up inside an unsaturated porous media under microwave energy at a vacuum pressure condition. The unsaturated porous media is composed of glass beads, water, and air. The absorbed microwave power term is computed based on Lambert's law. The finite difference method together with Newton-Raphson technique is employed to predict the heat, multiphase flow, and pressure build-up. Based on the numerical analysis of the effects of vacuum pressure and types of dielectric materials, it was found that the vacuum pressure had a strong effect on temperature, absorbed microwave power, saturation and pressure build-up distribution, and movement of fluid inside the unsaturated porous media during the microwave drying process.  相似文献   

    18.
    瓷质砖湿坯对流干燥过程的传热传质研究   总被引:3,自引:0,他引:3  
    引用建立于Whitaker的体积平均方程和Darcy定律基础止的多孔介质内部热质传递的等效耦合扩散模型,寻出一组关于液体饱和度、温度和气相压力的新支配方程,应用该方程组对瓷质砖坯体干燥过程进行了数值分析和实验测定。在平均含湿饱和度的变化方面,数值解与实验结果十分吻合。还改变影响坯体干燥过程的一些因素进行计算机模拟计算,通过改变这些因素的大小来考察计算结果,以期获得某些定性或定量的结论,从而用以指导实际生产过程。  相似文献   

    19.
    A new, simple pyrolysis model for charring materials is applied to several numerical and experimental test cases with variable externally imposed heat fluxes. The model is based on enthalpy. A piecewise linear temperature field representation is adopted, in combination with an estimate for the pyrolysis front position. Chemical kinetics are not accounted for: the pyrolysis process takes place in an infinitely thin front, at the ‘pyrolysis temperature’. The evolution in time of pyrolysis gases mass flow rates and surface temperatures is discussed. The presented model is able to reproduce numerical reference results, which were obtained with the more complex moving mesh model. It performs better than the integral model. We illustrate good agreement with numerical reference results for variable thickness and boundary conditions. This reveals that the model provides good results for the entire range of thermally thin and thermally thick materials. It also shows that possible interruption of the pyrolysis process, due to excessive heat losses, is automatically predicted with the present approach. Finally, an experimental test case is considered. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

    20.
    《Drying Technology》2013,31(8):1411-1431
    Abstract

    A simulation model for convective drying of wet porous materials was developed. For the simulation, we measured the moisture diffusivities within them and applied a modified Dubinin-Astakhov equation to the moisture sorption data for a membrane filter. The simulation results not accounting for internal mass transfer resistance were quite different from the experimental ones. The drying characteristics calculated by a shrinking core model with effective moisture diffusivity represented a much lower drying rate and much higher temperatures, respectively, than the experimental ones. This meant that we must consider the plural moisture transport mechanisms within the samples. Therefore, we calculated the drying rate and temperatures with an apparent overall mass transfer coefficient damping with a decrease in the moisture content. The results accounting for the hygroscopic effects broadly agreed with the experimental ones by the evaluation.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号