首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article presents experimental and modeled drying kinetics of potato slices of the Desiree variety (9 × 9 × 3 mm3) in a pulsed fluid bed as a function of the air velocity, air temperature, and rotating disk velocity of the pulse generator. A statistical multifactor experimental design (23) was applied to analyze the drying process with two levels each of drying temperature, air velocity, and rotating disk velocity. The results showed that the significant factors were air temperature, air velocity, rotating disk velocity, and the binary interactions of air velocity with both the temperature and the rotating disk velocity. The simplified variable diffusivity model (SVDM) gave the least deviation for the experimental data. The effective diffusivity values determined in this work are similar to those reported in the literature.  相似文献   

2.
Fluidization characteristics of crushed oil palm fronds were studied. The elongated shape of the particles and their fibrous nature created entanglement between the particles and caused the bed to form crack and plug flow when aerated in ordinary fluidized bed. Fluidization of the fibres became feasible with the aid of mechanical agitation. Agitation helped to loosen the entanglement of the fibres which prevents air to pass through the bed of particles, as a result, fluidization state could be attained. Experiments were carried out in a column with height of 72 cm and ID of 14.4 cm. Superficial air velocities used ranged from 0.1 to 1.1 m/s, bed heights ranged from 4 to 8.5 cm, agitation speeds ranged from 300 to 500 rpm and particle initial moisture contents from 0.5 to 2.4 g water/g dry solids. Analysis of the fluidization characteristics showed that minimum fluidization velocity was independent with bed height and agitation speed. However, investigation on the effect of particle initial moisture content showed that minimum fluidization velocity increased with particle moisture content. A new empirical correlation to predict minimum fluidization velocity has been derived which gives good agreement with experimental data in this study and the data from other study in the literature.  相似文献   

3.
《Drying Technology》2013,31(8):1869-1895
Abstract

The use of a fluidized bed dryer with a lateral air flow and mechanical agitation to the drying of sludge from a wastewater treatment plant was investigated. Experimental curves of moisture content vs. drying time, as well as heat transfer coefficients and the size characteristics of the products, were determined at temperatures between 80°C and 110°C, a stirring rate of 55 rpm and air velocity of 0.9 m/s for 3 kg sludge batches with initial moisture contents of 0.55 and 0.65 (d.b.). Experimental drying kinetics were compared with values derived from three models based on Fick's second law, namely: the constant diffusivity model, the simplified variable diffusivity model, and the modified quasi-stationary model.  相似文献   

4.
The batch drying kinetics of corn as a test material were investigated experimentally in a novel rotating jet spouted bed (RJSB) using both continuous and intermittent (on/off) spouting and heating schemes. The parameters investigated include inlet air temperature, bed height, superficial air velocity, nozzle diameter, distributor rotational speed and intermittency of spouting and heat input. The results indicate that the drying kinetics are comparable with conventional spouted and fluidized beds for slow drying materials and that intermittent drying can save up to 40% of the thermal energy as well as air consumption with better quality product.  相似文献   

5.
This research explores the production of low-moisture, high-rank coal using a batch-type, laboratory-scale, circulating fluidized bed to dry low-rank Indonesian coal with a high moisture content of 35 wt%. The operation was performed using air as a fluidization gas in a riser (a 4-m-tall pipe with an inner diameter of 0.04 m) at a gas velocity ranging from 2.0 to 2.7 m/s and a riser temperature of 80 to 150°C. The electric heaters were installed in the upper part of a downcomer to prevent the condensation of the evaporated moist- ure. The drying rate of the coal was investigated in terms of the inlet gas temperature, the gas velocity, and the drying time in order to determine the optimum operating conditions. Changes in the moist- ure content of the coal, before and after the experiments, were char- acterized by a proximate analysis, an ultimate analysis, the higher heating value (HHV), the lower heating value (LHV), a particle size analysis, and by the equilibrium moisture content. The results show that 70 to 80 wt% (wet basis, wb) of the total moisture can be reduced when the gas velocity of the riser is 2.0 m/s and the gas temperature is 150°C. In experiments, a simple mathematical model based on the heat and mass balances and a thin-layer drying model were simul- taneously used to predict the drying behavior of coal under the given operating conditions. The results of the model are similar to those of the experiment.  相似文献   

6.
The objective of this work was the experimental and theoretical study of sawdust drying, in batch and continuous experiences, using a pulsed fluidized bed dryer.

In the batch experiences, a 23 factorial design was used to determine the kinetics of drying, the critical moisture content, and the effective coefficients of both diffusivity and heat transfer, all of them as a function of the velocity and temperature of the air, the speed of turning of the slotted plate that generates the air pulses in the dryer, using sawdust with 65% moisture in each run.

In the continuous operation, a 23 factorial design was used to study the effect of the solid flow and the velocity and temperature of the air on both the product moisture and the distribution of residence times. In order to determine these last ones, digital image processing was used, utilizing sawdust colored by a solution of methylene blue as tracer.

The statistically significant factors were the velocity and the temperature of the heating air, for both the continuous and batch operations. Although the speed of turn of the slotted plate was not significant, it was observed that the air pulses increased the movement of particles, facilitating its fluidization, especially at the beginning of drying.

The heat transfer coefficients were adjusted according to the equation Nu = 0.0014 Re p 1.52, whose standard deviation of fit is 0.145.

The period of decreasing rate was adjusted to several diffusivity models, giving the best fit the simplified variable diffusivity model (SVDM). The curve of distribution of residence times was adjusted using the model of tanks in series, with values between 2.6 and 5 tanks.  相似文献   

7.
The drying of carbohydrate suspensions on polypropylene particles in a pulsed fluidized bed was studied by means of a 25 experimental design, to determine the effect of the air flow and temperature, suspension flow rate, and free section and rotating speed of the rotary plate on the Nusselt number, the moisture content of the product, and the percentage of solids retained inside the bed (which were minimized to 4.9 and 14.4%, respectively) with an air flow of 600 m3/h at 90°C and 720 mmHg, a suspension flow rate of 6 L/h, and a plate with 6% free section, rotating at 50 rpm.

Additionally, the effects of temperature, air flow, and suspension flow rate on the residence time distribution (RTD) were determined, using the stimulus-response methodology. The RTD was represented by 1.1 to 2 tanks in series, according to this model. The mean residence time of the dried carbohydrate particles was between 5.4 and 8.2 min.

Finally, an egg suspension could be dried at 4 L/h, with air at 90°C, with a mean residence time about 50% longer that that found for drying carbohydrate suspensions.  相似文献   

8.
循环流化床中C类颗粒的干燥   总被引:1,自引:1,他引:0  
为将循环流化床(CFB)技术应用于C类颗粒(<30μm)的干燥,在自建的循环流化床(内径0.104 m×高2.35 m)内,以玉米淀粉(dp=8 μm,ρp=800 kg/m3)为研究对象,考察了不同操作参数对其干燥特性及干湿分离情况的影响.结果表明:循环流化床适用于C类颗粒的干燥;干燥速率随气速及进风温度的增大而增大...  相似文献   

9.
Analyzing the attrition of Victorian brown coal during air and steam fluidized bed drying, the change in particle size distribution over a range of initial moisture contents (60% to 0%) and residence times (0 to 60 minutes) was determined. Dried at a temperature of 130°C with a fluidization velocity 0.55 m/s and an initial particle size of 0.5–1.2 mm, both fluidization mediums show a shift in the particle size distribution between three and four minutes of fluidization, with a decrease in mean particle size from 665 µm to around 560 µm. Using differential scanning calorimetry (DSC), the change in particle size has been attributed to the transition between bulk and non-freezable water (approximately 55% moisture loss) and can be linked to the removal of adhesion water, but not to fluidization effects. This is proved through the comparison of air fluidized bed drying, steam fluidized bed drying, and fixed bed drying—the fixed bed drying is being used to determine the particle size distribution as a function of drying. The results show the three drying methods produce similar particle size distributions, indicating that both fluidization and fluidization medium have no impact upon the particle size distribution at short residence times around ten minutes. The cumulative particle size distribution for air and steam fluidized bed dried coal has been modeled using the equation Pd = A2 + (A1 ? A2)/(1 + (d/x0)p), with the resultant equations predicting the effects of moisture content on the particle size distribution. Analyzing the effect of longer residence times of 30 and 60 minutes, the particle size distribution for steam fluidized bed dried coal remains the same, while air fluidized bed dried coal has a greater proportion of smaller particles.  相似文献   

10.
A rotating-pulsed fluidized bed (RPFB) dryer was employed to conduct the drying of poly-hydroxybutyrate (PHB) cohesive granules. Along the experiments, it was possible to identify, visually, 3 different dynamic regimes that were related with the temperature profile, the drying kinetics and the fluid dynamic behavior. The drying kinetics of PHB showed a short constant drying rate period followed by a decreasing drying rate period. The constant drying rate (Nc) and final moisture content (dry basis) were related to the rotation frequency (responsible for the pulsation effect), temperature and velocity of the inlet air. Furthermore, measurements of molecular mass (gel permeation chromatography analysis) and Carr Index (flowability test) on PHB samples were done before and after the drying. The RPFB dryer showed to be appropriate to dry the PHB granules, resulting in an excellent fluid dynamic behavior that provided uniform drying of the solid. The best conditions of drying were identified at 7 Hz of rotation frequency, 90 °C and 0.55 m/s of inlet air temperature and velocity. At these conditions the dried PHB reached final moisture content of 0.56% (wet basis) after 2 h of drying.  相似文献   

11.
This article presents experimental and modeled drying kinetics of potato slices of the Desiree variety (9 × 9 × 3 mm3) in a pulsed fluid bed as a function of the air velocity, air temperature, and rotating disk velocity of the pulse generator. A statistical multifactor experimental design (23) was applied to analyze the drying process with two levels each of drying temperature, air velocity, and rotating disk velocity. The results showed that the significant factors were air temperature, air velocity, rotating disk velocity, and the binary interactions of air velocity with both the temperature and the rotating disk velocity. The simplified variable diffusivity model (SVDM) gave the least deviation for the experimental data. The effective diffusivity values determined in this work are similar to those reported in the literature.  相似文献   

12.
《Drying Technology》2013,31(9):1735-1757
Abstract

Urease activity, cracking, and breakage are important factors in considering the quality of raw soybean for feed meal industries. A two-dimensional spouted bed dryer was investigated to determine its capability for thermally inactivating the urease enzyme and maintaining its other qualities. The experimental results have shown that the drying kinetics of soybean in a two-dimensional spouted bed dryer are of the form described in the thin layer drying. The expression for the model parameter in Newton's law of cooling equation accounting for the moisture contents and inlet air temperatures was developed. The initial moisture content and inlet air temperature conditions cause cracks in the kernels. The strong collision between kernels and deflector because of high superficial velocity leads to high percentage of broken soybeans in the spout region. However, the velocity of 15.9 m/s can reduce the breakage below 5%. The inactivation of urease at low-to-moderate moisture content is suitably described by the first order kinetics. The modified Monod equation is applied when the moisture content is higher than 26% dry basis due to the inhibitory effect of water content on the inactivation rate. To complete urease inactivation and maintain protein quality, the temperatures of 150°C should be used.  相似文献   

13.
王海  施明恒 《化工学报》2002,53(10):1040-1045
通过对典型的多孔湿物料在离心流化床中干燥过程的理论分析和实验研究 ,首次将含湿多孔介质传热传质过程和物料与气流之间的外部传递过程相耦合 ,导出了离心流化床的理论模型和控制方程组 ,对于离心流化床中湿物料的干燥过程引进了数值模拟 ,结果表明增加气体表观流速、控制入口气体的温度和相对湿度以及加大床体转速均对干燥有不同的影响  相似文献   

14.
ABSTRACT

The drying performance of a novel device capable of mobilising a bed of fibrous materials is evaluated. The drying kinetic of the vegetable product used for this work, cut lamina tobacco particles, was determined from fixed bed experiments. A falling-rate period was observed for the entire drying curve. The results showed that the drying rate is controlled by internal mass transfer mechanism for gas superficial velocities above 0.8 m/ s. The proposed model is based on an effective liquid diffusion coefficient that varies with solids temperature according to an Arrhenius-type relationship. Batch drying experiments were carried out in the mobilised bed apparatus under various conditions of inlet air temperature, humidity and flowrate. Assuming perfect mixing and no internal resistance to heat transfer for the solids, the performance of the mobile bed can be predicted using the proposed internal liquid diffusion model  相似文献   

15.
Citrus sinensis peel drying kinetics in a fluidized bed with inert material were investigated. Drying impact on microbiological activity as well as limonene and vitamin C content was also studied. Drying parameters studied were as follows: temperatures of 40°C, 50°C, and 60°C; air velocities of 0.73 m/s and 0.85 m/s; and orange peel:sand weight ratios of 1:0, 1:1, and 1:2. High temperatures, high air velocity, and the presence of inert material increased the drying rate. Nine thin-layer drying models were fitted to the experimental data of Citrus sinensis peels. The Midilli et al. model was found to be the most suitable model for describing the drying kinetics of Citrus sinensis peels. Vitamin C and limonene content were higher in the product dried using a fluidized bed than in the sun-dried product. Drying of Citrus sinensis peel in a fluidized bed also may reduce microorganism growth, increasing storage life.  相似文献   

16.
17.
18.
Saccharomyces boulardii yeast is considered as a probiotic according to the World Health Organization (WHO). Like any other probiotic, Saccharomyces boulardii is available as a freeze-dried formulation. Although freeze drying is the most preferred method of preserving the microorganisms, the process is very expensive. The cost of capsules containing freeze-dried probiotic yeast is certainly out of reach of the underprivileged population of the world. Hence, the present work focuses on developing a new formulation and cost-effective drying process for probiotic yeast. Freeze drying was compared with fluidized bed drying (FBD) and heat pump–assisted fluidized bed drying (HP-FBD) techniques for drying of Saccharomyces boulardii formulation. The process involves addition of lactose and microcrystalline cellulose to the biomass obtained by centrifugation and then making the dough. This blend is then extruded and spheronized to form granules. Heat pump fluidized bed drying of the formulation resulted in higher activity retention compared to atmospheric fluid bed drying. This encouraged further experimentation using HP-FBD to study the effect of various operating variables such as air temperature, air humidity, and velocity on the drying kinetics and the deactivation kinetics. It was observed that the temperature and humidity play a major role in the deactivation and drying, whereas the change in air velocity has comparatively less effect on both parameters. The effective diffusivity and the deactivation rate constants were correlated to the temperature using an Arrhenius-type equation.  相似文献   

19.
《分离科学与技术》2012,47(16):2256-2261
Gas-solid fluidized bed separation technique is very beneficial for saving water resources and for the clean utilization of coal resource. The hydrodynamics of 0.15–0.06 mm fine Geldart B magnetite powder were experimentally and numerically studied to decrease the lower size limit. The results show that the static bed height should be controlled near 300 mm (e.g., 300–350 mm). The bubble size, amount, and frequency of the fine particle bed are smaller than those of the bed containing 0.3–0.15 mm large Geldart B particles, thus leading to a higher bed activity. The pressure drop and density of the fine particle bed are uniform and stable, which indicates a good fluidization quality. Furthermore, simulated results are consistent with experimental data, which indicates the correctness and effectiveness of the simulations. The superficial gas velocity should be adjusted to not more than 1.8U mf for the fine particle bed. Additionally, wide size range magnetite powder, which contains 94.23 wt% < 0.3 mm particles with a 0.3–0.06 mm particles content of 91.38 wt%, was used in an industrial scale modularized demonstration system for 50-6 mm coal density separation. The ash content of feed coal was reduced from 55.35% to 14.67% with a probable error, E, value of 0.06 g/cm3.  相似文献   

20.
The effect of water blanching treatment and the inlet air temperature on drying kinetics as well as the quality attributes of carrot cubes dried in a spout–fluidized bed dryer at 60, 70, 80, and 90°C were analyzed. The material shrinkage and the rehydration potential were calculated to assess the changes in quality of dried carrots. It was found that the value of the air velocity during the drying of carrot cubes in a spout–fluidized bed dryer should be related to the moisture content of the carrot particles. A high value of air velocity at the beginning of the drying cycle and a lower value for the later stages were also required. The linear equation was correlated to the data of shrinkage of raw and blanched carrots. Blanching significantly influenced the coefficients in the shrinkage model derived for drying of carrot cubes in a spout–fluidized bed dryer, while drying temperature did not influence the shrinkage of carrot particles. The intensity of heat and mass transfer during spout–fluidized drying of carrot cubes was dependent on the drying temperature. A correlation was developed to calculate the values of effective moisture diffusivity of dried carrot cubes as a function of the moisture content and temperature of the material. It was observed that for any given time of rehydration, both the moisture content and the rehydration ratio calculated for samples dried at 60°C were higher than for samples dried at temperatures of 60, 70, 80, and 90°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号