首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
K. S. Ong 《Drying Technology》2013,31(3-4):907-913
ABSTRACT

An experimental investigation use conducted on the performance of a solar box dryer for drying bamboo operating under tropical rearher conditions. The dryer is a greenhouse-type designed for multi-crap solar drying. Air circulation was by electrically-operated fan. The results shoved that the moisture content of the bamboo could be brought down to about 19% from an initial value of nearly 90% in 17 days by operating the dryer over 8 hours each day. Under natural drying conditiona. the final moisture content reached was only 12%. Although eolar drying of bamboo vaa only marginally faster than nacural drying. noncrhelesa. final moisture content was lower.  相似文献   

2.
K. S. Ong 《Drying Technology》1996,14(10):2411-2417
An experimental investigation was conducted on the performance of a solar box dryer for drying bamboo operating under tropical weather conditions. The dryer is a greenhouse-type designed for multi-crop solar drying. Air circulation was by electrically-operated fan. The results showed that the moisture content of the bamboo could be brought dovn to about 19% from an initial value of nearly 90% in 17 days by operating the dryer over 8 hours each day. under natural drying conditions, the final moisture content reached was only 22%. Although solar drying of bamboo was only marginally faster than natural drying. nonetheless. final moisture content was lower.  相似文献   

3.
K. S. ONG 《Drying Technology》2013,31(4-5):999-1009
ABSTRACT

The performance of three different types of dryers for the hot air drying of sawn-limber planks are compared. These were the electric resistance dryer, solar dryer, and the dehumidifier dryer. Whilst the electric and solar dryers depended only upon hot air for drying, the dehumidifier dryer relied on hot dehumidified air. The results of investigations carried out on timber drying employing these three types of dryers in the Engineering Faculty are compiled and compared here in this paper. The results showed that the electric dryer produced the fastest drying lime and lowest moisture content, followed by dehumidifier drying. The solar dryer achieved a lower moisture content and a faster drying rate compared to natural drying, although the difference in drying times was marginal.  相似文献   

4.
This article presents experimental and simulated results of drying of peeled longan in a side-loading solar tunnel dryer. This new type of solar tunnel dryer consists of a flat-plate solar air heater and a drying unit with a provision for loading and unloading from windows at one side of the dryer. These are connected in series and covered with glass plates. A DC fan driven by a 15-W solar cell module supplies hot air in the drying system. To investigate the experimental performance, five full-scale experimental runs were conducted and 100 kg of peeled longan was dried in each experimental run. The drying air temperature varied from 32 to 76°C. The drying time in the solar tunnel dryer was 16 h to dry peeled longan from an initial moisture content of 84% (w.b.) to a final moisture content of 12% (w.b.), whereas it required 16 h of natural sun drying under similar conditions to reach a moisture content of 40% (w.b.). The quality of solar-dried product was also good in comparison to the high-quality product in markets in terms of color, taste, and flavor. A system of partial differential equations describing heat and moisture transfer during drying of peeled longan in this solar tunnel dryer was developed and this system of nonlinear partial differential equations was solved numerically by the finite difference method. The numerical solution was programmed in Compaq Visual FORTRAN version 6.5. The simulated results agreed well with the experimental data for solar drying. This model can be used to provide the design data and it is essential for optimal design of the dryer.  相似文献   

5.
《Drying Technology》2013,31(7):1357-1368
Abstract

A thin-layer forced air solar dryer was designed to study the feasibility of drying pistachio nuts. The dryer was tested during the 2001 and 2002 drying seasons. The maximum temperature in the solar collector reached 56°C, which was 20°C above the ambient temperature. The required drying time was 36 h. During the first day of drying (0800 to 1700 h) the moisture content dropped to about 21% (wb). The final moisture content of the dried nuts was 6% wb, which was 1% below the recommended storage moisture. The drying constant of the pistachio nuts during solar drying was determined using two mathematical models, a one-term series solution of Fick's diffusion equation and an exponential decaying model. There was no significant difference between the two models (α = 0.05). In general, the quality of solar dried nuts was better than the conventional heated air due to slower drying rates.  相似文献   

6.
7.
A lab model vacuum-assisted solar dryer was developed to study the drying kinetics of tomato slices (4, 6, and 8 mm thicknesses) compared with open sun drying under the weather conditions of Montreal, Canada. The drying study showed that the time taken for drying of tomato slices of 4, 6, and 8 mm thicknesses from the initial moisture content of 94.0% to the final moisture content of around 11.5 ± 0.5% (w.b.) was 360, 480, and 600 min in vacuum-assisted solar dryer and 450, 600, and 750 min in open sun drying, respectively. During drying, it was observed that the temperature inside the vacuum chamber was increased to 48°C when the maximum ambient temperature was only 30°C. The quality of tomato slices dried under vacuum-assisted solar dryer was of superior quality in terms of color retention and rehydration ratio. The drying kinetics using thin-layer drying models and the influence of weather parameters such as ambient air temperature, relative humidity, solar insolation, and wind velocity on drying of tomato slices were evaluated.  相似文献   

8.
Abstract

Design features, development, experimental functional performance and economic evaluation of an energy efficient solar energy dryer for commercial production of high-quality hay and processed forage products are presented. The solar hay dryer consists of an improved solar collector with selective coated aluminum absorber plate and spaced fins, and a drying shed connected to the collector by an insulated duct and having a perforated metal grate floor, swing-away plywood frames and polyethylene curtains for effectively sealing the hay stack, and a crawl space below the floor where a 3-hp in-line centrifugal fan is housed for air circulation by suction. In late August and in early September, 1996, 160 small rectangular bales of alfalfa hay with about 25% bromegrass were successfully dried from 33% initial moisture content to 13%, and from 25% to 11% moisture in 4 and 3 days, respectively, under average weather conditions in Saskatoon, Saskatchewan, Canada. With about 18 m3/min per tonne airflow, 10-15 °C temperature rise above ambit was obtained during peak bright sunshine hours. Relatively high daily average collector Effciency of 76%, high drying effectiveness, drying uniformity, uniform air distribution and tight sealing of the stack were achieved which resulted in an attractive green color of hay, no mold growth on hay, and an overall system drying efficiency of about 79%. Compared to a conventional natural gas drying system or field-drying method, the payback period on extra investment costs recovered through drying cost savings of $3/ t to $6/ t or through over two times higher prices for high-quality hay produced by the solar drying system may be just one or two years, respectively.  相似文献   

9.
A dynamic mathematical model for drying of agricultural products in an indirect cabinet solar dryer is presented. This model describes the heat and mass transfer in the drying chamber and also considers the heat transfer and temperature distribution in a solar collector under transient conditions. For this purpose, using conservation laws of heat and mass transfer and considering the physical phenomena occurring in a solar dryer, the governing equations are derived and solved numerically. The model solution provides an effective tool to study the variation of temperature and humidity of the drying air, drying material temperature, and its moisture content on each tray. The predicted results are compared with available experimental data. It is shown that the model can predict the performance of the cabinet solar dryer in unsteady-state operating conditions well. Furthermore, the effect of some operating parameters on the performance and efficiency of dryer is investigated and compared with selected published data.  相似文献   

10.
ABSTRACT

The external mechanisms that control drying rate are basically fixed by the operating conditions of the dryer being the temperature of the drying air the most important one. The final content of thermosensitive compounds is also determined by this condition and this is why the final quality of the product and the operating conditions are inter-related. The example of this phenomenon is the processing of pyrethrum. The organic compounds extracted from the Chrysanthemus cinerariaefolium flowers are called pyrethrins, which is the most ancient known natural insecticide. In this work, results obtained from the experimental drying of Chrysanthemus cinerariaefolium flowers are presented. Also, the influence of the drying air temperature on the pyrethrin content is established. The experimental data were used to derive a mathematical model that describes the drying rate and degradation kinetics.  相似文献   

11.
This paper presents a novel type of dryer for experimentally evaluating the drying kinetics of seeded grapes. In the developed drying system, it has been particularly included an expanded-surface solar air collector, a solar air collector with phase-change material (PCM) and drying room with swirl element. An expanded-surface solar air collector has been used to achieve high heat transfer and turbulence effect whiles a solar air collector with PCM has been used to perform the drying process even after the sunset. On the other hand, the swirl elements have been located to give the swirl effect to air flow in drying room. These advantages make the proposed novel system a promising dryer in that lower moisture value and less drying time. The drying experiments have been carried out simultaneously both under natural conditions and by the dryer with swirl flow and without swirl flow at three different air velocities. The obtained moisture ratio values have been applied to six different moisture ratio models in the literature. The model having the highest correlation coefficient (R) and the lowest Chi-square (χ2) value has been determined as the most relevant one for each seeded grape drying status.  相似文献   

12.
EXPERIMENTAL INVESTIGATION ON SOLAR DRYING OF FISH USING SOLAR TUNNEL DRYER   总被引:7,自引:0,他引:7  
This paper presents field level performance of the solar tunnel dryer for drying of fish. The dryer consists of a transparent plastic covered flat plate collector and a drying tunnel connected in series to supply hot air directly into the drying tunnel using four d.c. fans, operated by two 40 watt solar modules. This dryer can be used to dry upto 150 kg of fish and three sets of full scale field level drying runs for drying silver jew (Johnius argentatus) fish were conducted in February-March, 1999. The temperature of the drying air at the collector outlet varied from 35.1 ° C to 52.2 ° C during drying. The fish was initially treated with dry salt and stacked for about 16 hours before drying. The salt treated fish was dried to a moisture content of 16.78% (w.b.) from 67% (w.b.) in 5 days of drying in solar tunnel dryer as compared to 5 days of drying in the traditional method for comparable samples to a final moisture content of 32.84%. In addtion, the fish dried in the solar tunnel dryer was completely protected from rain, insects and dust, and the dried fish was a high quality product.  相似文献   

13.
K. S. Ong 《Drying Technology》2013,31(3-4):1231-1237
ABSTRACT

Solar dryers have been considered for timber drying in a number of countries because of the expected savings in drying costs. From a review of past works on solar, natural, and conventional drying it was observed that while solar dryers were able to dry timber faster compared to natural drying, the difference was only marginal in some instances. The drying rates are expected to be dependent upon ambient conditions in which the dryera are operated. Solar dryers would operate more efficiently in countries with low humidity than in tropical regions. Thus the thermal performance and also the economics of solar dryer is country dependent. In the present paper, a comparison of the drying rates obtained with a solar dryer is made with that obtained with an electrically operated drying kiln.  相似文献   

14.
ABSTRACT

A deterministic model was developed to perform a board-by-board simulation of a forced convective batch lumber kiln. Individual board properties may be input and dryer operating parameters varied. The drying rates are empirical correlations based on single-board laboratory tests. The model incorporates the thermodynamic properties of the wood and gas, as well as mass and energy balances within the lumber stack. It also accounts for differences in heat and mass transfer resulting from position and changing gas properties throughout the dryer. The rate of drying predicted by the model and the final moisture content distribution were verified by weighing boards in a batch kiln before, during, and after drying. The application of the model is illustrated by simulating four common scenarios.  相似文献   

15.
The novel low-cost band thermodynamic dryer equipped with a solar collector, a parabolic focusing collector, a heat exchanger, screw fan, and a drying cabinet with a band was designed and tested. The maximum temperature in the solar collector reached 85°C, which was 55°C above the ambient temperature. The required drying time was 4.5 h, much reduced from the traditional solar drying time of 48 h. The final moisture content of the Roselle calyx was 12% w.b., which is the recommended storage moisture content. Measurements of ambient temperature and humidity, air temperature, and relative humidity inside the dryer as well as solids moisture loss-in-weight data are employed as a means to study the performance of the dryer. Solar drying was compared with conventional sun drying and heated air drying, using the following evaluation criteria: drying time, dried Roselle color, texture, taste, and production cost. For evaluation, a model-based Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methodology was used. After the evaluation, the proposed continuous solar dryer was found to be better than conventional drying and heated air drying due to slower drying rate and better quality of the dried Roselle.  相似文献   

16.
《Drying Technology》2013,31(1-2):187-203
Abstract:

This article presents the modeling and simulation of a batch pilot-scale vibrofluidized bed dryer. The model considers the effect of back-mixing by establishing interconnected drying zones. The model's equations consist of the mass and energy balances for each zone in the solid phase, while a complete mixing is assumed in the gas phase. The drying and heat transfer parameters are correlated with the operating conditions by means of three neural networks that have been adapted from data obtained experimentally. The system of algebraic-differential equations provides the solid's moisture content and temperature profiles as a function of time. The model was validated by experiments with turnip seeds. Good fit was obtained using only four drying zones.  相似文献   

17.
《Drying Technology》2013,31(7):1637-1660
Abstract

By adopting the central-composite experiment design, the response surface methodology was used to optimize operating conditions of rubber wood drying. The independent variables are initial moisture content of rubber wood, and three drying environment parameters namely, temperature, relative humidity, and air velocity. The investigating responses are final moisture content, drying time, and energy consumption. The restriction of the optimization is the designated final moisture content, which is not greater than 16%. The third-order polynomial models with transformed responses were developed from experiment data to generate 3-D response surfaces and contour plots. The analysis of variance (ANOVA) was performed to identify the significant parameters affecting the rubber wood drying. Drying temperature and holding relative humidity are those two influential operating parameters that significantly control the final moisture of rubber wood and affect the drying time and energy. The multiple contour plots of drying responses show that the optimum operating regions are located mainly at high temperature drying zone. The high temperature drying practice can save energy and drying time by 44 and 25% respectively, in comparison to the conventional temperature drying.  相似文献   

18.
ABSTRACT

A rotary drum dryer prototype was designed, fabricated and tested to combine convection drying with conduction heating of paddy to increase moisture reduction rates. Ambient air forced inside the drum counter-flow to the direction of the cascading grains brought about “dryeration” of the hot grains, resulting in cooler grain output and increased moisture reduction rates. Its partial drying capacity doubled that of the benchmark pre-dryer at 5?rpm drum speed and quadrupled at 7?rpm, requiring only a single-pass operation. Tests using freshly harvested and re-wetted paddy showed that partial drying capacity, final moisture content and moisture reduction rate were all significantly affected by counter-flow air velocity, Its overall thermal efficiency was also 50% higher.  相似文献   

19.
N. Kechaou  M. Maâlej 《Drying Technology》2013,31(4-5):1109-1125
ABSTRACT

Experimental drying curves for Tunisia Deglet Nour dates were obtained in a laboratory dryer under different drying conditions The air temperature was varied from 30 to 69°C, relative humidity from 11.6 to 47.1 % and air velocity from 0.9 to 2.7 m/s. A numerical method to obtain a solution of a diffusion equation in which the diffusivity depends upon temperature and moisture content has been proposed to investigate the moisture movement in a date by assuming the sample to be a homogenous infinite cylinder. To rind the fitting moisture and temperature dependent diffusivity, the calculated drying curves are compared with the observed drying curves and an empirical equation for the moisture diffusivity of the date has presented as a function of temperature and moisture. It has been shown that the moisture distribution in the date during drying can be obtained by using the empirical equation presented.  相似文献   

20.
《Drying Technology》2013,31(4-5):917-933
ABSTRACT

Hydrodynamics and drying kinetics for the pulp and paper primary sludge dried in a pulsed fluid bed dryer with relocated air stream are presented. Batch experiments have indicated that drying of disintegrated sludge to the required 12% moisture content takes place during the first drying period at practically constant material temperature close to the wet bulb temperature with respect to the inlet air conditions. Equations were developed for pressure drop, minimum pulsed-fluidization velocity, dynamic bed height, and volumetric mass transfer coefficient. Continuous experiments under drying conditions determined from the average residence time concept have confirmed that transportation of disintegrated sludge along the dryer follows the plug flow model.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号